Выборочный метод

  • 1. Определение выборочного наблюдения
  • 2. Виды и схемы отбора
  • 3. Ошибки выборки
  • 4. Способы распространения выборочных результатов на генеральную совокупность
  • ЛЕКЦИЯ № 9. Выборочное наблюдение

    1. Определение выборочного наблюдения

    Статистические исследования очень трудоемки и дороги, поэтому возникла мысль о замене сплошного наблюдения выборочным.

    Основная цель несплошного наблюдения состоит в получении характеристик изучаемой статистической совокупности по обследованной ее части.

    Выборочное наблюдение – это метод статистического исследования, при котором обобщающие показатели совокупности устанавливаются только по отдельно взятой части на основе положений случайного отбора.

    При выборочном методе изучению подвергается только некоторая часть изучаемой совокупности, при этом подлежащая изучению статистическая совокупность называется генеральной совокупностью.

    Выборочной совокупностью или просто выборкой можно называть отобранную из генеральной совокупности часть единиц, которая будет подвергаться статистическому исследованию.

    Значение выборочного метода: при минимальной численности исследуемых единиц проведение статистического исследования будет происходить в более короткие промежутки времени и с наименьшими затратами средств и труда.

    В генеральной совокупности доля единиц, которая обладает изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака – это генеральная средняя (обозначается х).

    В выборочной совокупности долю изучаемого признака называют выборочной долей, или частью (обозначается w), средняя величина в выборке – это выборочная средняя.

    Если в период обследования будут соблюдены все правила его научной организации, то выборочный метод даст довольно точны результаты, и поэтому данный метод целесообразно применять для проверки данных сплошного наблюдения.

    Этот метод получил широкое распространение в государственной и вневедомственной статистике, потому что при исследовании минимальной численности изучаемых единиц позволяет тщательно и точно провести исследование.

    Изучаемая статистическая совокупность состоит из единиц с варьирующими признаками. Состав выборочной совокупности может отличаться от состава генеральной совокупности, это расхождение между характеристиками выборки и генеральной совокупности составляет ошибку выборки.

    Ошибки, свойственные выборочному наблюдению, характеризуют размер расхождения между данными выборочного наблюдения и всей совокупности. Ошибки, возникающие в ходе выборочного наблюдения, называются ошибками репрезентативности и делятся на случайные и систематические.

    Если выборочная совокупность недостаточно точно воспроизводит всю совокупность из–за несплошного характера наблюдения, то это называют случайными ошибками, и их размеры определяются с достаточной точностью на основании закона больших чисел и теории вероятностей.

    Систематические ошибки возникают в результате нарушения принципа случайности отбора единиц совокупности для наблюдения.

    2. Виды и схемы отбора

    Размер ошибки выборки и методы ее определения зависят от вида и схемы отбора.

    Различают четыре вида отбора совокупности единиц наблюдения:

    1) случайный;

    2) механический;

    3) типический;

    4) серийный (гнездовой).

    Случайный отбор – наиболее распространенный способ отбора в случайной выборке, его еще называют методом жеребьевки, при нем на каждую единицу статистической совокупности заготовляется билет с порядковым номером.

    Далее в случайном порядке отбирается необходимое количество единиц статистической совокупности. При этих условиях каждая из них имеет одинаковую вероятность попасть в выборку, например тиражи выигрышей, когда из общего количества выпущенных билетов в случайном порядке наугад отбирается определенная часть номеров, на которые приходятся выигрыши. При этом всем номерам обеспечивается равная возможность попасть в выборку.

    Механический отбор – это способ, когда вся совокупность разбивается на однородные по объему группы по случайному признаку, потом из каждой группы берется только одна единица Все единицы изучаемой статистической совокупности предварительно располагаются в определенном порядке, но в зависимости от объема выборки механически через определенный интервал отбирается необходимое количество единиц.

    Типический отбор – это способ, при котором исследуемая статистическая совокупность разбивается по существенному, типическому признаку на качественно однородные, однотипные группы, затем из каждой этой группы случайным способом отбирается определенное количество единиц, пропорциональное удельному весу группы во всей совокупности.

    Типический отбор дает более точные результаты, так как при нем в выборку попадают представители всех типических групп.

    Серийный (гнездовой) отбор. Отбору подлежат целые группы (серии, гнезда), отобранные случайным или механическим способом. По каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.

    Точность выборки зависит и от схемы отбора. Выборка может быть проведена по схеме повторного и бесповторного отбора.

    Повторный отбор. Каждая отобранная единица или серия возвращается во всю совокупность и может вновь попасть в выборку Это так называемая схема возвращенного шара.

    Бесповторный отбор. Каждая обследованная единица изымается и не возвращается в совокупность, поэтому она не попадает в повторное обследование. Эта схема получила название невозвращенного шара.

    Бесповторный отбор дает более точные результаты, потому что при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.

    Комбинированный отбор может проходить одну или несколько ступеней. Выборка называется одноступенчатой, если отобранные однажды единицы совокупности подвергаются изучению.

    Выборка называется многоступенчатой, если отбор совокупности проходит по ступеням, последовательным стадиям, причем каждая ступень, стадия отбора имеет свою единицу отбора.

    Многофазная выборка – на всех ступенях выборки сохраняется одна и та же единица отбора, но проводится несколько стадий, фаз выборочных обследований, которые различаются между собой широтой программы обследования и объемом выборки.

    Характеристики параметров генеральной и выборочной совокупностей обозначаются следующими символами:

    N – объем генеральной совокупности;

    n – объем выборки;

    X – генеральная средняя;

    х – выборочная средняя;

    р – генеральная доля;

    w – выборочная доля;

    ?2 – генеральная дисперсия (дисперсия признака в генеральной совокупности);

    ?2 – выборочная дисперсия того же признака;

    ?– среднее квадратическое отклонение в генеральной совокупности;

    ?– среднее квадратическое отклонение в выборке.

    3. Ошибки выборки

    Каждая единица при выборочном наблюдении должна иметь равную с другими возможность быть отобранной – это является основой собственнослучайной выборки.

    Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом.

    Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.

    Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

    Собственнослучайный отбор в чистом виде является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного статистического наблюдения.

    Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.

    Выборочная доля (w), или частность, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности (n):

    Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

    Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:

    1) для средней количественного признака:

    ?х =|х – х|;

    2) для доли (альтернативного признака):

    ?w =|х – p|.

    Только выборочным наблюдениям присуща ошибка выборки

    Выборочная средняя и выборочная доля – это случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.

    Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.

    Средняя ошибка выборки зависит от степени варьирования изучаемого признака, в свою очередь степень варьирования характеризуется дисперсией ?2 или w(l – w) – для альтернативного признака. Чем меньше вариация признака и дисперсия, тем меньше средняя ошибка выборки, и наоборот.

    При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

    1) для средней количественного признака:

    где ?2 – средняя величина дисперсии количественного признака.

    2) для доли (альтернативного признака):

    Так как дисперсия признака в генеральной совокупности ?2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

    Формулы средней ошибки выборки при случайном повторном отборе следующие. Для средней величины количественного признака: генеральная дисперсия выражается через выборную следующим соотношением:

    где S2 – значение дисперсии.

    Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.

    При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал.

    При этом размер интервала в генеральной совокупности равен обратному значению доли выборки.

    При достаточно большой совокупности механический отбор по точности результатов близок к собственнослучайному Поэтому для определения средней ошибки механической выборки используют формулы собственнослучайной бесповторной выборки.

    Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, используется, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.

    Затем из каждой типической группы собственнослучайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

    Типическая выборка обычно применяется при изучении сложных статистических совокупностей.

    Типическая выборка дает более точные результаты. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

    Серийная выборка предполагает случайный отбор из генеральной совокупности равновеликих групп для того, чтобы в таких группах подвергать наблюдению все без исключения единицы.

    Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

    4. Способы распространения выборочных результатов на генеральную совокупность

    Характеристика генеральной совокупности на основе выборочных результатов – это конечная цель выборочного наблюдения.

    Выборочный метод применяется для получения характеристик генеральной совокупности по определенным показателям выборки. В зависимости от целей исследования это осуществляется прямым пересчетом показателей выборки для генеральной совокупности или методом расчета поправочных коэффициентов.

    Способ прямого пересчета в том, что при нем показатели выборочной доли w или средней х распространяются на генеральную совокупность с учетом ошибки выборки.

    Способ поправочных коэффициентов применяется, когда целью выборочного метода является уточнение результатов сплошного учета. Данный способ используется при уточнении данных ежегодных переписей скота у населения.

    ВЫБОРОЧНЫЙ МЕТОД (син.: выборочное наблюдение, выборка) — статистический метод, позволяющий получить характеристику всей изучаемой совокупности в целом (генеральной совокупности) на основе специального отбора и изучения части составляющих ее единиц (выборочной совокупности).

    В. м., основанный на законе больших чисел и теории вероятностей (см. Больших чисел закон, Вероятностей теория), теоретически был разработан русскими математиками П. Л. Чебышевым, А. М. Ляпуновым, А. А. Марковым и др. В. м. широко применялся в статистических исследованиях отечественными врачами в 90-е годы 19 в. Теория и практика В. м. получила дальнейшее развитие в советской статистике, в т. ч. санитарной.

    В советском здравоохранении В. м. применяется наряду со сплошным исследованием при изучении различных вопросов состояния здоровья населения и деятельности мед. учреждений. Сплошное наблюдение производят при необходимости иметь краткую информацию обо всех без исключения единицах наблюдения исследуемой совокупности (напр., при переписях населения, изучении заболеваемости, смертности и др.). В. м. используют для получения углубленных сведений или для проверки данных, полученных сплошным методом, путем более детального и строгого изучения части объектов, а также для проведения пробных, поисковых работ. В. м. обеспечивает экономию сил, средств, сокращение сроков работы при расширении и углублении программы исследования.

    Для обеспечения статистически достоверных результатов предъявляют особые требования к выборочной совокупности. Она должна быть репрезентативной (представительной) по отношению к генеральной совокупности. Это означает, что выборочная совокупность должна быть достаточно представительной по численности отобранных единиц, а также должна соответствовать качественному составу генеральной совокупности.

    Применение В.м. включает следующие этапы: 1) определение объема выборочной совокупности; 2) специальный отбор необходимой численности единиц из генеральной совокупности; 3) расчет выборочных статистических величин и оценка их репрезентативности; 4) распространение результатов исследования с выборочной совокупности на всю генеральную совокупность.

    Основным условием применения В. м. является определение достаточного объема выборочной совокупности, обеспечивающей получение статистически достоверных результатов, и репрезентативность ее. По мере увеличения объема выборки уменьшается ошибка выборки, т. е. возрастает ее точность. Для определения объема выборочной совокупности используют специальные формулы. С целью обеспечения качественного соответствия состава выборочной совокупности составу генеральной совокупности применяют следующие способы отбора необходимой численности единиц из генеральной совокупности (или способы выборочного наблюдения): случайный, механический, типологический, серийный.

    Случайный способ — выборку производят с помощью жеребьевки (рендомизации) или с помощью специальных таблиц случайных чисел; каждая единица генеральной совокупности имеет равную возможность стать единицей выборочной совокупности. Механический способ — единицы генеральной совокупности располагают в определенном порядке (по номерам, алфавиту и т. д.), а затем механически производят отбор единиц через какой-либо интервал (напр., 5, 10, 15 и т. д.). Типологический способ — генеральную совокупность предварительно расчленяют на отдельные качественно однородные группы (типы) по какому-либо изучаемому признаку, напр, население по возрасту, проживанию в различных географических районах (горных, приморских, степных и др.)» по профессии (занимающиеся полеводством, животноводством, рыболовством и т. д.). После предварительного расчленения генеральной совокупности на группы производят отбор части единиц внутри каждой типологической группы. Отбор осуществляют механическим путем. При этом необходимо, чтобы объем выборки из каждой типологической группы был пропорционален удельному весу данной группы в составе изучаемой генеральной совокупности. Серийный (гнездовой) способ — выборочную совокупность образуют путем отбора не отдельных единиц, а сразу целых серий (гнезд) из генеральной совокупности. Для этой цели всю генеральную совокупность предварительно разбивают на относительно однородные серии (гнезда). Отбор серий осуществляют методом случайной или механической выборки. Отбор должен производиться так, чтобы каждой серии генеральной совокупности была обеспечена одинаковая возможность быть отобранной в выборочную совокупность. Такой принцип выборочного наблюдения обеспечивает репрезентативность выборочной совокупности по отношению к генеральной. В каждой отобранной серии изучаются все составляющие ее единицы.

    После отбора всех единиц выборочной совокупности приступают к расчету различных (в зависимости от необходимости) статистических величин: средних арифметических, относительных величин, коэффициентов корреляции и др.

    Важным этапом В. м. является оценка репрезентативности выборочных статистических величин: средних арифметических, относительных величин, коэффициентов корреляции и т.

    д.

    Для оценки репрезентативности этих величин используется ошибка репрезентативности (m). Она показывает, насколько результаты, полученные при выборочном наблюдении, отличаются от результатов, к-рые были бы получены при сплошном изучении всей генеральной совокупности.

    Ошибка репрезентативности (m) средней арифметической рассчитывается по формуле: m =σ/√n , где σ — среднее квадратическое отклонение, n — число наблюдений. Ошибка репрезентативности для показателя рассчитывается по формуле:

    m =√(p×q/n) , где р — величина показателя в процентах, а q=100—р (если p выражено в промилле, то q=1000—p).

    В. м. предусматривает определение меры различия (ошибку) статистических величин выборочной совокупности от статистических величин генеральной совокупности и тем самым обеспечивает возможность перенесения выводов с выборочной совокупности на всю генеральную совокупность.

    Заключительным этапом при применении В. м. является распространение результатов выборочного исследования на всю генеральную совокупность.

    Статистические величины выборочной совокупности несколько отличаются от величин генеральной совокупности. Статистика позволяет определить эти пределы колебаний выборочных величин, к-рые не должны выходить за пределы доверительных границ статистических величин генеральной совокупности. Используя ошибку репрезентативности m с заданной мерой вероятности безошибочного прогноза р, можно установить доверительные границы, в пределах к-рых будет находиться средняя арифметическая величина (или показатель) того или иного признака в генеральной совокупности.

    Для этого используют формулу: M=m±tm, где М — доверительные границы средней арифметической генеральной совокупности; m — средняя арифметическая, полученная в выборочной совокупности; t — критерий точности, к-рый зависит от заранее заданной вероятности безошибочного прогноза p.

    Математически доказано, что при р = = 95% t=2, при р = 99,7% t=3. Такое соотношение закономерно при числе наблюдений n>30. При меньшем числе наблюдений соотношение величин p и t находят по специальной статистической таблице «критерия t» (критерий Стьюдента). Напр., для определения среднего роста мужчин в возрасте 25 лет в генеральной совокупности можно измерить рост мужчин 25 лет в выборочной совокупности. Так, если средний рост мужчин 25 лет в выборочной совокупности составил 173 см, а ошибка репрезентативности средней величины роста m=±0,3 см, то при вероятности безошибочного прогноза р=95,0% критерий t=2, М=173±(2х0,3 мм) или 172,4-173,6. Это означает, что при любом увеличении числа обследованных лиц аналогичного пола и возраста их средний рост не окажется (с вероятностью в 95%) ниже 172,4 см и выше 173,6 см. Если, по мнению исследователя, доверительные границы слишком велики и тем самым полученная средняя величина (показатель) является ненадежной, следует принять меры к увеличению числа наблюдений.

    При сравнении двух выборочных средних величин В. м. предусматривает определение существенности различия между ними по формуле

    где М1 и М2 — сравниваемые средние арифметические, а m1 и m2 — соответствующие ошибки репрезентативности. Если t= 2, то можно будет утверждать (с вероятностью безошибочного прогноза р = 95%), что сравниваемые величины действительно существенно различны между собой. Если же t = 3, то р=99,7%, т. е. различие еще более существенно.

    Такое статистическое доказательство достоверности различия результатов исследования широко применяется при выводах об эффективности тех или иных оздоровительных мероприятий, сравнении методов лечения, при доказательстве различия сравниваемых групп по каким-либо иным признакам и т. д. При этом необходимо иметь в виду, что количественный результат оценок существенности различия должен сопровождаться глубоким качественным анализом, напр, изучением в сравнительном плане особенностей распространения того или иного заболевания в зависимости от пола, возраста, профессии, социальных условий и т. д.

    «Малыми выборками» называются группы, состоящие из 30 и менее единиц наблюдения, по результатам к-рых оценивается вся генеральная совокупность. В этих случаях предъявляются повышенные требования к обработке и оценке выборочных статистических величин. Видоизменяются расчеты среднего квадратического отклонения (а) и критерия точности t. Оценка существенности различий двух выборочных статистических величин осуществляется также путем расчета критерия t, но полученного двумя разными путями, в зависимости от того, связаны или не связаны между собой сравниваемые совокупности (пример связанных между собой совокупностей: уровень кровяного давления до лечения и после лечения одних и тех же лиц; пример не связанных между собой совокупностей: уровень кровяного давления у мужчин и женщин).

    См. также Санитарная статистика.

    Библиогр.: Йейтс Ф. Выборочный метод в переписях и обследованиях, пер. с англ., М., 1965, библиогр.; Крылов В. Н. Выборочный метод в статистике, М., 1957; Мерков А. М. и Поляков Л. М. Санитарная статистика, Л., 1974, библиогр.; Сeпeтлиeв Д. Статистические методы в научных медицинских исследованиях, пер. с болг., М., 1968; Статистические методы исследования в медицине и здравоохранении, под ред. Л. Е. Полякова, Л., 19 71, библиогр.

    И. Г. Лаврова.

    виды выборки:

    • собственно-случайная;

    • механическая;

    • типическая;

    • серийная;

    • комбинированная.

    Собственно-случайная выборка заключается в отборе единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Однако прежде чем производить собственно-случайный отбор, необходимо убедиться, что все без исключения единицы генеральной совокупности имеют абсолютно равные шансы попадания в выборку, в списках или перечне отсутствуют пропуски, игнорирования отдельных единиц и т.п. Следует также установить четкие границы генеральной совокупности таким образом, чтобы включение или невключение в нее отдельных единиц не вызывало сомнений. Так, например, при обследовании студентов необходимо указать, будут ли приниматься во внимание лица, находящиеся в академическом отпуске, студенты негосударственных вузов, военных училищ и т.п.; при обследовании торговых предприятий важно определиться, включит ли генеральная совокупность торговые павильоны, коммерческие палатки и прочие подобные объекты. Собственно-случайный отбор может быть как повторным, так и бесповторным. Для проведения бесповторного отбора в процессе жеребьевки выпавшие жребии обратно в исходную совокупность не возвращаются и в дальнейшем отборе не участвуют. При использовании таблиц случайных чисел бесповторность отбора достигается пропуском чисел в случае их повторения в выбранном столбце или столбцах.

    Механическая выборка применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в расположении единиц (табельные номера работников, списки избирателей, телефонные номера респондентов, номера домов и квартир и т.п.).

    Генеральную совокупность при механическом отборе можно ранжировать или упорядочить по величине изучаемого или коррелирующего с ним признака, что позволит повысить репрезентативность выборки. Однако в этом случае возрастает опасность систематической ошибки, связанной с занижением значений изучаемого признака (если из каждого интервала регистрируется первое значение) или с его завышением (если из каждого интервала регистрируется последнее значение). Поэтому целесообразно отбор начинать с середины первого интервала

    Типический отбор. Этот способ отбора используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько типических групп. При обследовании населения такими группами могут быть, например, районы, социальные, возрастные или образовательные группы, при обследовании предприятий – отрасль или под-отрасль, форма собственности и т.п. Типический отбор предполагает выборку единиц из каждой типической группы собственно-случайным или механическим способом. Поскольку в выборочную совокупность в той или иной пропорции обязательно попадают представители всех групп, типизация генеральной совокупности позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки, которая в этом случае определяется только внутригрупповой вариацией.

    Отбор единиц в типическую выборку может быть организован либо пропорционально объему типических групп, либо пропорционально внутригрупповой дифференциации признака.

    Серийный отбор. Данный способ отбора удобен в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. В качестве таких серий могут рассматриваться упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и другие объединения. Сущность серийной выборки заключается в собственно-случайном или механическом отборе серий, внутри которых производится сплошное обследование единиц.

    Выборочный метод, статистический метод исследования общих свойств совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку. Математическая теория В. м. опирается на два важных раздела математической статистики — теорию выбора из конечной совокупности и теорию выбора из бесконечной совокупности. Основное отличие В. м. для конечной и бесконечной совокупностей заключается в том, что в первом случае В. м. применяется, как правило, к объектам неслучайной, детерминированной природы (например, число дефектных изделий в данной партии готовой продукции не является случайной величиной: это число — неизвестная постоянная, которую и надлежит оценить по выборочным данным). Во втором случае В. м. обычно применяется для изучения свойств случайных объектов (например, для исследования свойств непрерывно распределённых случайных ошибок измерений, каждое из которых теоретически может быть истолковано как реализация одного из бесконечного множества возможных результатов).

    Выбор из конечной совокупности и его теория являются основой статистических методов контроля качества и часто применяются в социологических исследованиях (см. Выборочное наблюдение). Согласно теории вероятностей, выборка будет правильно отражать свойства всей совокупности, если выбор производится случайно, т. е. так, что любая из возможных выборок заданного объёма n из совокупности объёма N имеет одинаковую вероятность быть фактически выбранной.

    На практике наиболее часто используется выбор без возвращения (бесповторная выборка), когда каждый отобранный объект перед выбором следующего объекта в исследуемую совокупность не возвращается (такой выбор применяется при статистическом контроле качества). Выбор с возвращением (выборка с повторением) рассматривается обычно лишь в теоретических исследованиях (примером выбора с возвращением является регистрация числа частиц, коснувшихся в течение данного времени стенок сосуда, внутри которого совершается броуновское движение).

    Если n<< N, то повторный и бесповторный выборы дают практически эквивалентные результаты.

    Свойства совокупности, исследуемые В. м., могут быть качественными и количественными. В первом случае задача выборочного обследования заключается в определении количества М объектов совокупности, обладающих каким-либо признаком (например, при статистическом контроле часто интересуются количеством М дефектных изделий в партии объёма N). Оценкой для М служит отношение mN/n, где m — число объектов с данным признаком в выборке объёма n. В случае количественного признака имеют дело с определением среднего значения совокупности Оценкой для является выборочное среднее где x1,…, xn — те значения из исследуемой совокупности x1, x2,…, xN, которые принадлежат выборке. С математической точки зрения 1-й случай — частная разновидность 2-го, которая имеет место, когда М величин xi равны 1, а остальные (N — М) равны 0; в этой ситуации и .

    В математической теории В. м. оценка средних значений занимает центральное место потому, что к ней в известной степени сводится изучение изменчивости признака внутри совокупности, так как за характеристику изменчивости обычно принимают дисперсию

    представляющую собой среднее значение квадратов отклонений xi от их среднего значения . В случае изучения качественного признака s2 = М (N — M)/N2.

    О точности оценок m/n и судят по их дисперсиям

    которые в терминах дисперсии конечной совокупности s2 выражаются в виде отношений s2/n (в случае выборок с повторением) и s2(N — n)/n (N — 1) (в случае бесповторных выборок). Так как во многих практически интересных задачах случайные величины m/n и при n³ 30 приближённо подчиняются нормальному распределению, то отклонения m/n от M/N и от , превышающие по абсолютной величине 2sm/n и соответственно, могут при n³ 30 осуществиться в среднем приблизительно в одном случае из двадцати. Более полную информацию о распределении количественного признака в данной совокупности можно получить с помощью эмпирического распределения этого признака в выборке.

    Выбор из бесконечной совокупности. В математической статистике результаты каких-либо однородных наблюдений (чаще всего независимых) принято называть выборкой даже в том случае, когда эти результаты не соответствуют понятию выборки с повторениями или без повторений из конечной совокупности. Например, результаты измерений углов на местности, подверженные независимым непрерывно распределённым случайным ошибкам, часто называют выборкой из бесконечной совокупности. Предполагается, что принципиально можно осуществить любое число таких наблюдений. Полученные фактически результаты считают выборкой из бесконечного множества возможных результатов, называемых генеральной совокупностью.

    Понятие генеральной совокупности не является логически безупречным и необходимым. Для решения практических задач нужна не сама бесконечная генеральная совокупность, а лишь те или иные характеристики, которые ей ставятся в соответствие. Эти характеристики с точки зрения теории вероятностей являются числовыми или функциональными характеристиками некоторого распределения вероятностей, а элементы выборки —случайными величинами, подчиняющимися этому распределению. Такое истолкование позволяет распространить на выборочные оценки общую теорию статистических оценок.

    По этой причине, например, в вероятностной теории обработки наблюдений понятие бесконечной генеральной совокупности заменяется понятием распределения вероятностей, содержащего неизвестные параметры. Результаты наблюдений истолковываются как экспериментально наблюдаемые значения случайных величин, подчиняющихся этому распределению, Цель обработки — вычисление по результатам наблюдений в том или ином смысле оптимальных статистических оценок для неизвестных параметров распределения.

    Статистическое исследование может осуществляться по данным несплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих несплошное наблюдение, является выборочный метод.

    Выборочное наблюдение — метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора.

    При выборочном методе обследованию подвергается небольшая часть всей изучаемой совокупности (обычно до 5 — 10%, реже до 15 — 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочнойсовокупностью или просто выборкой.

    Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.

    В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака — генеральной средней (обозначается ).

    В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю величину в выборке — выборочной средней (обозначается ).

    Выборочная доля, или частость, определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:

    Ошибка выборки — это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности.

    Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, метода отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.

    Ошибки выборки подразделяются на:
    • ошибки регистрации, возникающие из-за неправильных или неточных сведений. Источниками таких ошибок могут быть непонимание существа вопроса, невнимательность регистратора, пропуск или повторный счет некоторых единиц совокупности, описки при заполнении формуляров и т. д.
    • ошибки репрезентативности, которые могут быть систематическими и случайными. Систематические ошибки репрезентативности возникают из-за неправильного, тенденциозного отбора единиц, при котором нарушается основной принцип научно организованной выборки — принцип случайности. Случайные ошибки репрезентативности означают, что несмотря на принцип случайности отбора единиц, все же имеются расхождения между характеристиками выборочной и генеральной совокупности. Изучение и измерение случайных ошибок репрезентативности является основной задачей выборочного метода.

    Добавить комментарий

    Закрыть меню