Углерод и его свойства

Углерод (C)

  • Обозначение — C (Carbon);
  • Период — II;
  • Группа — 14 (IVa);
  • Атомная масса — 12,011;
  • Атомный номер — 6;
  • Радиус атома = 77 пм;
  • Ковалентный радиус = 77 пм;
  • Распределение электронов — 1s22s22p2;
  • t плавления = 3550°C;
  • t кипения = 4827°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,55/2,50;
  • Степень окисления: +4, +3, +2, +1, 0, -1, -2, -3, -4;
  • Плотность (н. у.) = 2,25 г/см3 (графит);
  • Молярный объем = 5,3 см3/моль.

Соединения углерода:

Углерод в виде древесного угля известен человеку с незапамятных времен, поэтому, о дате его открытия говорить не имеет смысла. Собственно свое название «углерод» получил в 1787 году, когда была опубликована книга «Метод химической номенклатуры», в которой вместо французского названия «чистый уголь» (charbone pur) появился термин «углерод» (carbone).

Углерод обладает уникальной способностью образовывать полимерные цепочки неограниченной длины, порождая тем самым огромный класс соединений, изучением которых занимается отдельный раздел химии — органическая химия. Органические соединения углерода лежат в основе земной жизни, поэтому, о важности углерода, как химического элемента, говорить не имеет смысла — он основа жизни на Земле.

Сейчас рассмотрим углерод с точки зрения неорганической химии.

Углерод в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером «6», относится к 14(IVa) группе (См. Атомы 14(IVa) группы).


Рис. Строение атома углерода.

Электронная конфигурация углерода — 1s22s22p2 (см. Электронная структура атомов). На внешнем энергетическом уровне у углерода находятся 4 электрона: 2 спаренных на s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома углерода в возбужденное состояние (требует энергетических затрат) один электрон с s-подуровня «покидает» свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома углерода приобретает следующий вид: 1s22s12p3.


Рис. Переход атома углерода в возбужденное состояние.

Такая «рокировка» существенно расширяет валентные возможности атомов углерода, которые могут принимать степень окисления от +4 (в соединениях с активными неметаллами) до -4 (в соединениях с металлами).

В невозбужденном состоянии атом углерода в соединениях имеет валентность 2, например, CO(II), а в возбужденном — 4: CO2(IV).

«Уникальность» атома углерода заключается в том, что на его внешнем энергетическом уровне находятся 4 электрона, поэтому, для завершения уровня (к чему, собственно, стремятся атомы любого химического элемента) он может с одинаковым «успехом», как отдавать, так и присоединять электроны с образованием ковалентных связей (см. Ковалентная связь).

Углерод, как простое вещество

Как простое вещество углерод может находиться в виде нескольких аллотропных модификаций:

  • Алмаз
  • Графит
  • Фуллерен
  • Карбин

Алмаз


Рис. Кристаллическая решетка алмаза.

Свойства алмаза:

  • бесцветное кристаллическое вещество;
  • самое твердое вещество в природе;
  • обладает сильным преломляющим эффектом;
  • плохо проводит тепло и электричество.


Рис. Тетраэдр алмаза.

Исключительная твердость алмаза объясняется строением его кристаллической решетки, которая имеет форму тетраэдра — в центре тетраэдра находится атом углерода, который связан равноценно прочными связями с четырьмя соседними атомами, образующими вершины тетраэдра (см. рисунок выше). Такая «конструкция» в свою очередь связана с соседними тетраэдрами.

Графит


Рис. Кристаллическая решетка графита.

Свойства графита:

  • мягкое кристаллическое вещество серого цвета слоистой структуры;
  • обладает металлическим блеском;
  • хорошо проводит электричество.

В графите атомы углерода образуют правильные шестиугольники, лежащие в одной плоскости, организованные в бесконечные слои.

В графите химические связи между соседними атомами углерода образованы за счет трех валентных электронов каждого атома (изображены синим цветом на рисунке ниже), при этом четвертый электрон (изображен красным цветом) каждого атома углерода, расположенный на p-орбитали, лежащей перпендикулярно плоскости слоя графита, не участвует в образовании ковалентных связей в плоскости слоя. Его «предназначение» заключается в другом — взаимодействуя со своим «собратом», лежащим в соседнем слое, он обеспечивает связь между слоями графита, а высокая подвижность p-электронов обусловливает хорошую электропроводность графита.


Рис. Распределение орбиталей атома углерода в графите.

Фуллерен


Рис. Кристаллическая решетка фуллерена.

Свойства фуллерена:

  • молекула фуллерена представляет собой совокупность атомов углерода, замкнутых в полые сферы типа футбольного мяча;
  • это мелкокристаллическое вещество желто-оранжевого цвета;
  • температура плавления = 500-600°C;
  • полупроводник;
  • входит в состав минерала шунгита.

Карбин

Свойства карбина:

  • инертное вещество черного цвета;
  • состоит из полимерных линейных молекул, в которых атомы связаны чередующимися одинарными и тройными связями;
  • полупроводник.

Химические свойства углерода

При нормальных условиях углерод является инертным веществом, но при нагревании может реагировать с разнообразными простыми и сложными веществами.

Выше уже было сказано, что на внешнем энергетическом уровне углерода находится 4 электрона (ни туда, ни сюда), поэтому углерод может, как отдавать электроны, так и принимать их, проявляя в одних соединениях восстановительные свойства, а в других — окислительные.

Углерод является восстановителем в реакциях с кислородом и другими элементами, имеющими более высокую электроотрицательность (см. таблицу электроотрицательности элементов):

  • при нагревании на воздухе горит (при избытке кислорода с образованием углекислого газа; при его недостатке — оксида углерода(II)):
    C + O2 = CO2;
    2C + O2 = 2CO.
  • реагирует при высоких температурах с парами серы, легко взаимодействует с хлором, фтором:
    C + 2S = CS2
    C + 2Cl2 = CCl4
    2F2 + C = CF4
  • при нагревании восстанавливает из оксидов многие металлы и неметаллы:
    C0 + Cu+2O = Cu0 + C+2O;
    C0+C+4O2 = 2C+2O
  • при температуре 1000°C реагирует с водой (процесс газификации), с образованием водяного газа:
    C + H2O = CO + H2;

Углерод проявляет окислительные свойства в реакциях с металлами и водородом:

  • реагирует с металлами с образованием карбидов:
    Ca + 2C = CaC2
  • взаимодействуя с водородом, углерод образует метан:
    C + 2H2 = CH4

Углерод получают термическим разложением его соединений или пиролизом метана (при высокой температуре):
CH4 = C + 2H2.

Применение углерода

Соединения углерода нашли самое широкое применение в народном хозяйстве, перечислить все их не представляется возможным, укажем только некоторые:

  • графит применяется для изготовления грифелей карандашей, электродов, плавильных тиглей, как замедлитель нейтронов в ядерных реакторах, как смазочный материал;
  • алмазы применяются в ювелирном деле, в качестве режущего инструмента, в буровом оборудовании, как абразивный материал;
  • в качестве восстановителя углерод используют для получения некоторых металлов и неметаллов (железа, кремния);
  • углерод составляет основную массу активированного угля, который нашел широчайшее применение, как в быту (например, в качестве адсорбента для очистки воздуха и растворов), так и в медицине (таблетки активированного угля) и в промышленности (в качестве носителя для каталитических добавок, катализатора полимеризации и проч.).

В начало страницы

Неорганические газы

Cтраница 1

Неорганические газы, окись углерода, метан.  

Неорганические газы, интересные с биологической точки зрения, могут быть растворены в плазме, питательных растворах, сусле или химически связаны, как кислород и окись углерода, гемоглобином крови.  

Неорганические газы определяют в самых различных материалах.  

Неорганические газы, как азот, кислород, углекислота и окись углерода, также легко растворяются в нефти и ее продуктах.  

Неорганические газы Метод дифференциальной импульсной вольтамперометрии был применен для определения диоксида серы — одного из главных приоритетных загрязнителей городского воздуха. Воздух пропускают через фильтр, смоченный раствором щелочи, промывают фильтр этим же раствором и полярографируют полученный экстракт.  

Нефть и нефтепродукты растворяют также неорганические газы в количествах, иногда превосходящих растворимость тех же газов в воде.

Целевые компоненты ( летучие органические соединения и неорганические газы) реагируют с наполнителем индикаторных трубок, изменяя их цвет, а по длине окрашенного слоя ( по заранее отградуированной шкале) судят о количестве ( и концентрации в воздухе) определяемых веществ.  

Лишь немногие материалы, в том числе благородные газы, некоторые неорганические газы и фторуглероды, имеющие более высокие потенциалы ионизации, не ионизируются.  

В водородном пламени горелки ПИД хорошо ионизируется большинство известных ЛОС и некоторые неорганические газы. Поэтому ПИД относится к универсальным детекторам и его часто используют для идентификации ЛОС.  

Газовая хроматография является универсальным методом анализа: с его помощью можно определять неорганические газы, металлы после перевода их в летучие хелатные комплексы, а также большинство органических соединений, включая полимеры, причем анализ можно проводить непосредственно либо после предварительного синтеза летучих производных или проведения термической деструкции. Универсальность метода проявляется и в том, что интервал определяемых концентраций чрезвычайно широк — от пикограммов до граммов. Использование газохромато-графических детекторов позволяет проводить определение с исключительно высокой чувствительностью, чаще всего недоступной другим хроматографическим методам. В случае применения недеструктивных детекторов разделенные компоненты можно легко выделить из газовой подвижной фазы.  

Структурные, термические и химические свойства мелонированного силохрома позволяют разделять и анализировать на нем как неорганические газы и легкие углеводороды, так и высококипящие ароматические углеводороды, а также различные вещества групп А и В с близкими температурами кипения.  

Кислородные соединения углерода. Угольная кислота и её соли. Карбонаты, их роль в организме.

В соответствии с возможными степенями окисления атома углерода, он образует два оксида: CO (оксид углерода(2)) – угарный газ, CO2 (оксид углерода (4)) – углекислый газ.

Оксид углерода (2) получают из муравьиной кислоты при нагревании в присутствии концентрированной серной кислоты как водоотнимающего средства:

HCOOH = H2O + CO

Оксид угдерода (4) получают действием кислоты на твердые карбонаты:

CaCO3 + 2HCl = CaCl2 + H2O + CO2

Физические свойства.

Оксид углерода (2) – угарный газ, бесцветный, без запаха, немного легче воздуха, плохо растворим в воде, ЯДОВИТ!

Оксид углерода (4) – углекислый газ бесцветный, без запаха, малорастворим в воде, тяжелее воздуха, является солеобразующим оксидом.

Химические свойства.

Оксид углерода(2).

1. Взаимодействие с кислородом:

2CO + O2 = 2CO2

2. Взаимодействие с оксидом меди (2):

CO + CuO = Cu + CO2

Оксид углерода(4).

1. Взаимодействует с основными оксидами:

CO2 + CaO = CaCO3

2. Взаимодействует с основаниями:

CO2 + Ca(OH)2 = CaCO2 + H2O

Угольная кислота и ее соли.

Угольная кислота существует только в растворе. Её можно получить растворением оксида углерода (4) в воде:

CO2 + H2O = H2CO3

При нагревании угольная кислота разлагается на оксид углерода (4) и воду, эта реакция обратима.

Угольная кислота образует два ряда солей: средние – карбонаты и кислые – гидрокарбонаты. Например, Na2CO3 – карбонат натрия, NaHCO3 – гидрокарбонат натрия.

Соли угольной кислоты – устойчивые соединения. Их получают, пропуская оксид углерода (4) через раствор щелочи:

CO2 + 2NaOH = Na2CO3 + H2O

При длительном пропускании оксида углерода (4) через раствор щелочи образуется кислая соль:

Na2CO3 + H2O + CO2 = 2NaHCO3

Все гидрокарбонаты хорошо растворимы в воде в отличие от карбонатов, из которых растворимы только карбонаты щелочных металлов и аммония.

Химические свойства.

1. Карбонаты и гидрокарбонаты при действии даже слабых кислот разлагаются с выделением CO2:

K2CO3 + 2HCl = 2KCl + H2O + CO2

KHCO3 + HCl = KCl + H2O + CO2

2. Растворимые карбонаты взаимодействуют с другими растворимыми солями:


K2CO3 + BaCl2 = BaCO3 + 2KCl

3. При нагревании многие карбонаты разлагаются с выделением CO2:

CaCO3 = CaO + CO2

а гидрокарбонаты переходят в карбонаты:

2NaHCO3 = Na2CO3 + H2O + CO2

Карбонаты кальция (пищевая добавка Е170) – это обычный белый мел. Краситель Е170 представляет собой химическое соединение — соль угольной кислоты, нерастворимую вводе и этаноле. В природе карбонаты кальция распространены достаточно широко, встречаются в виде минералов кальцита, арагонита и ватерита. Большинство групп беспозвоночных (моллюски, губки) состоят из различных форм карбоната кальция. Пищевая добавка Е170 обычно поставляется на производство в виде мелкого белого порошка. Химическая формула карбоната кальция (красителя Е170): CaCO3.

Вопрос№55.

Кремний распространение в природе. Важнейшие минералы и горные породы, содержащие кремний (силикаты).

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы, образуемые диоксидом кремния — это песок (речной и кварцевый), кварц и кварциты, кремень. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Вопрос№56.

Кремниевый ангидрид. Кремниевая кислота и её соли. Их значение.

Oксид кремния(IV) (диоксид кремния, кремнезём) SiO2) — бесцветные кристаллы, tпл 1713—1728 °C, обладают высокой твёрдостью и прочностью.

Свойства.

· Относится к группе кислых оксидов

· При нагревании взаимодействует с основными оксидами и щелочами

· Растворяется в плавиковой кислоте

· SiO2 относится к группе стеклообразующих оксидов, т.е. склонен к образованию переохлажденного расплава — стекла.

· Диэлектрик (электрический ток не проводит)

Кремниевая кислота (H2SiO3) – кислота очень слабая, в воде мало растворима. При нагревании легко распадается аналогично угольной кислоте:

H2SiO3 = H2O + SiO2

Соли кремниевой кислоты называются силикатами. Их состав обычно изображают формулой в виде соединений оксидов элементов. Например, силикат кальция CaSiO3 можно выразить так: СаO•SiO2.

Силикаты обычно нерастворимы в воде. Исключение составляют силикаты натрия и калия, получаемые сплавлением SiO2 с соответствующими гидроокисями или карбонатами, например:

SiO2 + Na2CO3 = CO2 + Na2SiO3

Вопрос№57.

Подгруппа меди: характеристика. Распространение меди в природе, ее свойства, применение. Оксиды и гидроксиды меди. Соли двухвалентной меди. Комплексные соединения меди. Медь как микроэлемент. Медьсодержащие пестициды. Применение соединений меди в животноводстве. Серебро. Антисептические свойства соединений серебра.

Распространение в природе. Среднее содержание М. в земной коре (кларк) 4,7·10-3 % (по массе), в нижней части земной коры, сложенной основными породами, её больше (1·10-2 %), чем в верхней (2·10-3 %), где преобладают граниты и другие кислые изверженные породы. М. энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды М., имеющие большое промышленное значение. Среди многочисленных минералов М. преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная М., карбонаты и окислы.

М.

— важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание М. в живом веществе 2·10-4 %, известны организмы — концентраторы М. В таёжных и других ландшафтах влажного климата М. сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит М. и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) М. малоподвижна; на участках месторождений М. наблюдается её избыток в почвах и растениях, отчего болеют домашние животные.

В речной воде очень мало М., 1·10-7 %. Приносимая в океан со стоком М. сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены М. (5,7·10-3 % ), а морская вода резко недосыщена М. (3·10-7 %).

В морях прошлых геологических эпох местами происходило значительное накопление М. в илах, приведшее к образованию месторождений (например, Мансфельд в ГДР). М. энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд М. в песчаниках.

Химические свойства

Химическая активность небольшая, убывает с увеличением атомного номера.

Медь и её соединения

Получение

1. Пирометаллургия

CuO + C = Cu + CO

CuO + CO = Cu + CO2

2. Гидрометаллургия

CuO + H2SO4 = CuSO4 + H2O

CuSO4 + Fe = FeSO4 + Cu

электролиз:

2CuSO4 + 2H2O = 2Cu + O2­ + 2H2SO4
(на катоде) (на аноде)

Химические свойства

Взаимодействует с неметаллами при высоких температурах:

2Cu + O2 = 2CuO

Cu + Ci2 = CuCl2

Медь стоит в ряду напряжений правее водорода, поэтому не реагирует с разбавленными соляной и серной кислотами, но растворяется в кислотах – окислителях:

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO­ + 2H2O

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2­ + 2H2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2­ +2H2O

Применение. Большая роль М. в технике обусловлена рядом её ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам М. — основной материал для проводов; свыше 50 % добываемой М. применяют в электротехнической промышленности. Все примеси понижают электропроводность М., а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9 % Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из М. ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30—40 % М. используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50 % Zn) и различные виды бронз; оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. (подробнее см. Медные сплавы). Кроме нужд тяжёлой промышленности, связи, транспорта, некоторое количество М. (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шёлка.

Соединения одновалентной меди

Встречаются либо в нерастворимых соединениях (Cu2O, Cu2S, CuCl), либо в виде растворимых комплексов (координационное число меди – 2):

CuCl + 2NH3 = Cl

Оксид меди (I) — красного цвета, получают восстановлением соединений меди (II), например, глюкозой в щелочной среде:

2CuSO4 + C6H12O6 + 5NaOH = Cu2O + 2Na2SO4 + C6H11O7Na + 3H2O

Соединения двухвалентной меди

Оксид меди (II) — чёрного цвета. Восстанавливается под действием сильных восстановителей (например, CO) до меди. Обладает основным характером, при нагревании растворяется в кислотах:

CuO + H2SO4 = CuSO4 + H2O

CuO + 2HNO3 = Cu(NO3)2 + H2O

Гидроксид меди (II) Cu(OH)2 — нерастворимое в воде вещество светло-голубого цвета. Образуется при действии щелочей на соли меди (II):

CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4

При нагревании чернеет, разлагаясь до оксида:

Cu(OH)2 = CuO + H2O

Типичное основание. Растворяется в кислотах.

Cu(OH)2 + 2HCl = CuCl2 + 2H2O

Cu(OH)2 + 2H+ = Cu2+ + 2H2O

Растворяется в растворе аммиака с образованием комплексного соединения (координационное число меди – 4) василькового цвета (реактив Швейцера, растворяет целлюлозу):

Cu(OH)2 + 4NH3 = (OH)2

Малахит Cu2(OH)2CO3. Искусственно можно получить по реакции:

2CuSO4 + 2Na2CO3 + H2O = Cu2(OH)2CO3 + 2Na2SO4 + CO2­

Разложение малахита:

Cu2(OH)2CO3 = 2CuO + CO2­ + H2O

Медь как микроэлемент.Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития. В растениях и животных содержание меди варьируется от 10–15 до 10–3%. Мышечная ткань человека содержит 1·10–3% меди, костная ткань — (1-26)·10–4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных — участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма — дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.

Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1,0 мг/л.

Химия — Углерод — Нахождение в природе

01 марта 2011
Оглавление:
1. Углерод
2.

История
3. Физические свойства
4. Нахождение в природе
5. Химические свойства
6. Применение
7. Токсическое действие

Содержание углерода в земной коре 0,1 % по массе. Свободный углерод находится в природе в виде алмаза и графита. Основная масса углерода в виде природных карбонатов, горючих ископаемых — антрацит, бурые угли, каменные угли, горючие сланцы, нефть, горючих природных газов, торф, а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода СО2, в воздухе 0,046 % СО2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных.
В организм человека углерод поступает с пищей. Общее содержание углерода в организме человека достигает около 21 %. Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом и мочой.

Кругооборот углерода в природе включает биологический цикл, выделение СО2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов — в почву и в виде СО2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

В природе встречается минерал шунгит,в котором содержится как твердый углерод, так и значительные количества оксида кремния.

Просмотров: 27697

Добавить комментарий

Закрыть меню