Типовые динамические звенья

Типовые динамические звенья

⇐ Предыдущая123456789Следующая ⇒

Типовые звенья

Это простые модели элементов сложных линейных систем и даже систем вцелом.

Переходная характеристика звеньев

Переходная характеристика или функция позволяет и качественно, и количественно характеризовать быстродействие звеньев и систем.

Переходный процесс может быть как монотонным, так и колебательным и его длительность и является количественной характеристикой быстроты реакции звена на прикладываемые к нему воздействия.

Типовые звенья бывают:

  • простейшие (пропорциональное звено, интегратор и дифференцирующее звено);
  • звенья первого порядка (апериодическое или инерционное, инерционно-дифференцирующее, форсирующее и др.);
  • звено второго порядка (колебательное и его частный случай – апериодическое второго порядка);
  • звено третьего порядка (способное терять устойчивость, его можно назвать звеном Вышнеградского);
  • звено запаздывания.

Основные характеристики линейных звеньев:

  • переходная характеристикаh(t) — реакция звена на ступенчатое единичное воздействие 1(t);
  • передаточная функцияW(s), связывающая изображения входного X(s) и выходного Y(s) сигналов линейного звена;
  • комплексный коэффициент передачиW(jw), связывающий спектры входного X(jw) и выходного Y(jw) сигналов линейного звена;
  • импульсная или весовая функцияw(t) реакция звена на дельта-функцию Дирака d(t).

Типовые звенья линейных систем можно определять различными эквивалентными способами, в частности с помощью, так называемой передаточной функции, имеющей, как правило, дробно-рациональный вид, т.е. представляющей собой отношение двух полиномов:

где bi и aj – коэффициенты полиномов. Это т.н. параметры передаточной функции или звена.

Передаточная функция – это отношение изображения Y(p) выходного сигнала y(t) звена к изображению X(p) его входного сигнала x(t).

Т.е., передаточная функция позволяет по любому известному входному сигналу x(t) найти выходной y(t). Это значит, что с точки зрения ТАУ передаточная функция полностью характеризует систему управления или ее звено. Это же самое можно сказать и в отношении совокупности коэффициентов полиномов числителя и знаменателя передаточной функции.

Наличие нулевых корней в числителе или знаменателе передаточной функции типовых звеньев — это признак для разбиения последних на три группы:

  • Позиционные звенья: 1, 2, 3, 4, 5, — не имеют нулевых корней, и, следовательно, в области низких частот (т.е. в установившемся режиме), имеют коэффициент передачи равный k.
  • Интегрирующие звенья: 6, 7, 8, — имеют нулевой корень-полюс, и, следовательно, в области низких частот, имеют коэффициент передачи, стремящийся к бесконечности.
  • Дифференцирующие звенья: 9, 10 — имеют нулевой корень-ноль, и, следовательно, в области низких частот, имеют коэффициент передачи, стремящийся к нулю.

Переходные и весовые характеристики основных типовых звеньев приведены в Таблице 1. Перечисленные линейные звенья содержат один вход и один выход. Существует еще одно линейное звено, которое может иметь несколько, больше одного, входов и один выход: сумматор. Сумматор — необходимое звено для построения модели достаточно сложной системы, состоящей из нескольких звеньев.

Типовых звеньев всего около полутора десятков, но из них, как из кубиков (или, если угодно, как любое сложное вещество из отдельных химических элементов), можно построить модель линейной системы управления любой сложности.

Минимальный набор звеньев, который позволяет построить модель линейной системы любой сложности, в том числе и самих типовых звеньев, состоит всего из трех звеньев: пропорционального, интегратора и сумматора. Однако модель, построенную из этих трех звеньев, бывает труднее анализировать, чаще удобнее применять кроме них еще несколько типов звеньев.

Таблица 1.Передаточные, переходные и весовые функции типовых звеньев.

Позиционные

Интегрирующие

Дифферецирующие

Соединение звеньев.

4. Частотные характеристики

Частотная передаточная функция получается из обычной заменой оператора Лапласа s(или р) на комплексную частоту jw, т.е. в результате перехода от изображения Лапласа к изображению Фурье.

Дифференциальное уравнение движения системы связывает входной и выходной сигналы (т.е. функции времени), передаточная функция связывает изображения Лапласа тех же сигналов, а частотная ПФ связывает их спектры.

Частотная передаточная функция может быть представлена в следующих видах:

W(jw) = A(w) e jj(w), или W(jw) = U(w) + jV(w) ;

где:

· A(w) — модуль частотной передаточной функции — находится как отношение модулей числителя и знаменателя:

· j(w) — фаза частотной передаточной функции — находится как разность аргументов числителя и знаменателя:

· U(w) и V(w) — вещественная и мнимая части частотной ПФ. Для их нахождения необходимо избавиться от мнимости в знаменателе, умножением на сопряженную знаменателю комплексную величину.

⇐ Предыдущая123456789Следующая ⇒

Дата добавления: 2016-10-23; просмотров: 549 | Нарушение авторских прав

Рекомендуемый контект:


Похожая информация:


Поиск на сайте:


Типовые динамические звенья и их характеристики

Типовые динамические звенья- это минимально необходимый набор звеньев для описания системы управления произвольного вида.

Типы звеньев систем управления различаются по виду их передаточной функции (или дифференциального уравнения), определяющей все их динамические свойства и характеристики. Классификация основных типов динамических звеньев приведена на рис.3.9.

Основные типы звеньев делятся на четыре группы: позиционные, интегрирующие, дифференцирующие и неминимально-фазовые . Позиционные, интегрирующие и дифференцирующие звенья относятся к минимально-фазовым. Важным свойством минимально-фазовых звеньев является однозначное соответствие амплитудной и фазовой частотных характеристик. Другими словами, по заданной амплитудной характеристике всегда можно определить фазовую и наоборот.

Позиционные звенья

В звеньях позиционного, или статического типа, линейной зависимостью y = kx связаны выходная и входная величины в установившемся режиме. Коэффициент пропорциональности k между выходной и входной величинами представляет собой коэффициент передачи звена. Позиционные звенья обладают свойством самовыравнивания, то есть способностью самостоятельно переходить в новое установившееся состояние при ограниченном изменении входного воздействия.

Рис. 3.9. Классификация типовых динамических звеньев

Безынерционное (идеальное усилительное) звено.Это звено не только в статике, но и в динамике описывается алгебраическим уравнением

y(t) = kx(t). (3.14)

Передаточная функция:

W(s) = k. (3.15)

Амплитудно-фазовая частотная характеристика:

W(jw) = k, A(w) = k, y(w) = 0. (3.16)

Переходная и импульсная функции:

h(t) = k1(t), w(t) = kd(t). (3.17)

Безынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥.

Примерами таких безынерционных звеньев могут служить жесткая механическая передача, часовой редуктор, электронный усилитель сигналов на низких частотах и др.


Апериодическое (инерционное) звено первого порядка.Уравнение и передаточная функция звена:

(Tp+1) y(t) = x(t), , (3.18)

где T — постоянная времени, характеризует степень инерционности звена, т.е. длительность переходного процесса.

Амплитудно-фазовая частотная характеристика:

W(jw) = , , y(w) = — arctgTw. (3.19)

Таким образом, апериодическое звено первого порядка является фильтром низких частот.

Переходная и импульсная функции:

h(t) = (1 — ), w(t) = . (3.20)

Примерами апериодического звена первого порядка могут служить RC цепочка, нагревательный элемент и др.

Апериодическое (инерционное) звено второго порядка.Дифференциальное уравнение звена имеет вид

, (3.21)

причем предполагается, что 2Т2£ Т1.

В этом случае корни характеристического уравнения вещественные и уравнение (3.21) можно переписать в виде:

( T3p+1)(T4p+1) y(t) = x(t), (3.22)

где — новые постоянные времени.

Передаточная функция звена

. (3.23)

Из выражения (3.23) следует, что апериодическое звеновторого порядка можно рассматривать как комбинацию двух апериодических звеньев первого порядка.

Примерами апериодического звена второго порядка могут служить двойная RC цепочка, электродвигатель постоянного тока и др.

Колебательное звено.Описывается дифференциальным уравнением

, (3.24)

при Т1<2T2 корни характеристического уравнения комплексные и уравнение (3.24) переписывают в виде

(T2p2+2xTp+1) y(t) = x(t), (3.25)

где Т — постоянная времени, определяющая угловую частоту свободных колебаний l=1/Т;

x — параметр затухания, лежащий в пределах 0<x<1.

Общепринятая запись передаточной функции колебательного звена имеет вид

. (3.26)

Амплитудно-фазовая частотная характеристика звена:

,

, y(w) = — arctg . (3.27)

Временные характеристики представляют собой затухающие периодические процессы.

Примерами колебательного звена могут служить электрический колебательный контур, электродвигатель постоянного тока, маятник и др.

Консервативное звено.Консервативное звено является частным случаем колебательного при x=0. Оно представляет собой идеализированный случай, когда можно пренебречь влиянием рассеяния энергии в звене.

Амплитудно-фазовая характеристика совпадает с вещественной осью. При 0<w<1/T характеристика совпадает с положительной полуосью, а при w>1/T — с отрицательной полуосью.

Временные характеристики соответствуют незатухающим колебаниям с угловой частотой 1/T.

Интегрирующие звенья

В звеньях интегрирующего типа линейной зависимостью связаны в установившемся режиме производная выходной величины и входная величина. В этом случае для установившегося режима будет справедливым равенство , откуда и произошло название этого типа звеньев.

Идеальное интегрирующее звено.Уравнение и передаточная функция имеют вид

py(t) = x(t), . (3.28)

Амплитудно-фазовая частотная характеристика:

W(jw) = , A(w) = , y(w) = -900. (3.29)

Переходная и импульсная функции:

h(t) = t, w(t) = 1(t). (3.30)

Такое звено является идеализацией реальных интегрирующих звеньев.

Примерами идеальных интегрирующих звеньев могут служить операционный усилитель в режиме интегрирования, гидравлический двигатель, емкость и др.

Дифференцирующие звенья

В звеньях дифференцирующего типа линейной зависимостью связаны в установившемся режиме выходная величина и производная входной, откуда и произошло название этого типа звеньев.

Идеальное дифференцирующее звено.Уравнение и передаточная функция имеют вид

y(t) = px(t), W(s) = s . (3.31)

Амплитудно-фазовая частотная характеристика:

W(jw) = jw, A(w) = w, y(w) = +900. (3.32)

Переходная и импульсная функции:

h(t) = d(t), w(t) = . (3.33)

Такое звено является идеализацией реальных дифференцирующих звеньев.

Примерами идеальных дифференцирующих звеньев могут служить операционный усилитель в режиме дифференцирования, тахогенератор и др.

Форсирующее (дифференцирующее) звено первого порядка.Дифференциальное уравнение и передаточная функция

y(t) = (tp+1) x(t) , W(s) = ts+1, (3.34)

где t — постоянная времени дифференцирования.

Амплитудно-фазовая частотная характеристика:

W(jw) = (jwt + 1), A(w)= , y(w) = arctg wt . (3.35)

Переходная и импульсная функции:

Инерционно-форсирующее (упругое) звено

⇐ ПредыдущаяСтр 5 из 15Следующая ⇒

Это звено, у которого связь между выходным и входным сигналами выражается уравнением вида:

, (2.50)

где Т – постоянная времени;

k – коэффициент усиления.

Существенным параметром инерционно-форсирующего звена является коэффициент усиления. Если k<1, то звено по своим свойствам приближается к интегрирующему и инерционному звеньям. Если k>1, то звено ближе к дифференцирующему и инерционно-дифференцирующему звеньям.

Инерционно-форсирующее звено наряду с реальным дифференцирующим звеном применяется как средство для корректирования, улучшения переходных процессов.

Применяя к (2.50) преобразование Лапласа при нулевых начальных условиях, получим операторное уравнение

.

(2.51)

Переходная функция звена

. (2.52)

Переходная характеристика инерционно-форсирующего звена построенная по (2.52) при единичном входном воздействии изображены на рисунке 2.16 при .

Рисунок 2.16 – Переходные характеристики а) ; б) и

изображение в) на структурных схемах

Передаточная функция инерционно-форсирующего звена на основании (2.51) запишется как

. (2.53)

Комплексный коэффициент передачи получится путём замены pна jω

, (2.54)

или

(2.55)

где

(2.56)

На рисунке 2.17 построены годографы W(jω) и частотные характеристики инерционно-форсирующего звена при k>1 (а,б,в) и k<1 (г,д,в).

Рисунок 2.17

Логарифмическая амплитудно-фазовая характеристика описывается уравнением

(2.58)

Асимптотические характеристики в зависимости от величины k выражаются различно:

если k>1

(2.59)

если k<1

(2.60)

Логарифмические амплитудно – и фазо-частотные характеристики инерционно-форсирующего звена изображены на рисунке 2.18 (а при k >1, б при k<1).

Рисунок 2.18

Звенья второго порядка

Звеном второго порядка называется звено, связь между выходной и входной величиной которого определяется линейным дифференциальным уравнением второго порядка вида

, (2.60)

где Т – постоянная времени ; ξ – относительный коэффициент затухания (демпфирования).

Применяя к (2.60) преобразование Лапласа при нулевых начальных условиях, получим операторное уравнение

. (2.61)

В зависимости от вида корней характеристического уравнения инерционное звено второго порядка может иметь различные переходные характеристики. Это позволяет установить три разновидности звена – апериодическое, колебательное и консервативное.

При единичном входном воздействии для случая вещественных различных корней р1 и р2по уравнению (2.61) получим переходную функцию (ξ≥1):

В случае вещественных корней апериодическое звено второго порядка эквивалентно последовательному соединению двух инерционных звеньев первого порядка, поэтому передаточная функция может быть записана в виде

По выражению W(p) после замены р на jω получим частотную функцию W(jω) апериодического звена второго порядка, которая определяет частотные характеристики звена.

Колебательное звено

Если корни уравнения (2.61) будут комплексными, то инерционное звено второго порядка станет колебательным (ξ<1).

, (2.62)

где .

График переходной функции колебательного звена показан на рисунке 2.19. Примерами колебательного звена могут служить упругая механическая система с существенным влиянием массы, электрический колебательный контур и т.д.

По уравнениям (2.61) определяется передаточная функция инерционного звена

(2.63)

На основании W(p) получим выражение для амплитудно-фазовой характеристики W(jω)

(2.64)

Рисунок 2.19

по которой при различных значениях коэффициента затухания можно построить серию частотных характеристик колебательного звена (рисунок 2.20). Как видно из рисунка, годограф частотной характеристики проходит через два квадранта – IY и III – пересекает мнимую ось при ωТ=1, когда в выражении (2.63) 1+(jωT)2 =0. При этом .

С уменьшением ξ петля, очерченная годографом, увеличивается, и при ξ=0 характеристика вырождается в две полупрямые: 1 – от W(j ωT)=k до W(j ωT)→∞ при 0 < ωT<1 до 2 – от W(j ωT)→-∞ до W(j ωT)=0 при 1< ωT<∞.

Амплитудно-частотная и фазо-частотная характеристики колебательного звена выражаются уравнениям

(2.65)

(2.66)

Логарифмическая амплитудно-фазовая характеристика колебательного звена описывается уравнением

(2.67)

Вблизи точки резонанса (ωT=1) эта характеристика сильно зависит от коэффициента затухания ξ. С удалением от резонансной частоты характеристика практически перестаёт зависеть от ξ.

Для колебательных звеньев пользуются асимптотическими характеристиками

(2.68)

Поправка к асимптотической характеристике

зависит от коэффициента затухания ξ. Графики L(ω) и φ(ω) для различных ξ показаны на рисунке 2.21. У колебательных звеньев возникает всплеск при .

Рисунок 2.21

Консервативное звено

Уравнение динамики консервативного вена имеет вид

(2.69)

где Т – постоянная времени;

k– коэффициент усиления (или передачи).

Переходный процесс такого звена показан на рисунке 2.22.

Рисунок 2.22

Рисунок 2.23

Консервативное звено – частный случай звена второго порядка, когда отсутствует демпфирование (ξ=0). Применяя к (2.69) преобразование Лапласа при нулевых начальных условиях, получим операторное уравнение

Передаточная функция консервативного звена

(2.70) На основании (2.70) получим частотную функцию

, (2.71)

где

(2.72)

Логарифмическая амплитудно-частотная характеристика имеет разрыв при ω=ω0 (рисунок 2.23), что свидетельствует о возникновении незатухающих колебаний с этой частотой. Логарифмическая амплитудно-частотная характеристика может быть представлена в виде двух отрезков прямых линий. Одна линия уходит при lgω0≤lgω<∞ вправо от точки lgω0под углом -2 лог/дек; вторая линия при -∞<lgω≤lgω0 совпадает с линией lgkпраллельной оси абсцисс.

Фазо-частотная характеристика определяет скачкообразное изменение фазы при ω=ω0 от нуля до -180° (рисунок 2.23). Звено является минимально-фазовым.

Примером консервативного звена может служит идеальный пассивный четырёхполюсник, состоящий из Lи С (при отсутствии омического сопротивле- ния цепи), и другие элементы, если уравнения их динамики имеют вид уравнения (2.69).

Реальное дифференцирующее звено первого порядка

Это звено, у которого связь между выходной и входной величиной определяется уравнением вида

, (2.32)

где Т – постоянная времени звена;

k – коэффициент усиления звена.

Такие звенья называются реальными дифференцирующими, или инерционно-дифференцирующими.

Реальные дифференцирующие звенья применяются как средство корректирования переходных процессов, например, стабилизирующий трансформатор, дифференцирующие мостовые схемы и другое.

Применяя к (2.32) преобразование Лапласа при нулевых начальных условиях, получим операторное уравнение

. (2.33)

Переходная функция звена

. (2.34)

Переходная функция реального дифференцирующего звена, построенная по (2.34) при единичном ступенчатом воздействии, представляет собой экспоненциальную кривую (рисунок 2.12,а).

Рисунок 2.12 – Переходная функция (а) и изображение (б)

на структурных схемах реального дифференцирующего звена

Передаточная функция реального дифференцирующего звена на основании (2.33) запишется как

. (2.35)

Комплексный коэффициент передачи получается заменой p на jω в выражении (2.35):

, (2.36)

или , (2.37)

где

(2.38)

. (2.39)

Частотные характеристики показаны на рисунке 2.13, а…в.

Рисунок 2.13

Логарифмическая амплитудно-частотная характеристика

(2.40)

рассчитана по формуле (2.40) в таблице, аналогичной инерционному звену первого порядка, и представлена на рисунке 2.14

Рисунок 2.14 – ЛАЧХ и ЛФЧХ реального дифференцирующего звена

Асимптотическая характеристика состоит из двух полупрямых

Так же, как и в инерционных звеньях, поправка к асимптотической характеристике имеет вид кривой на рисунке 2.11, но с противоположным знаком.

Логарифмическая фазо-частотная характеристика реального дифференцирующего звена

Эта характеристика является характеристикой инерционного звена первого порядка, но приподнятой на 90° вдоль оси φ(ω).

2.1.3 Форсирующее звено 1 – го порядка

Звено, описываемое дифференциальным уравнением

(2.41)

называется форсирующим звеном. Такое звено получается в результате соединения пропорционального и дифференцирующего звеньев.

В уравнении (2.41) Т – постоянная времени, k – коэффициент усиления.

Применяя к (2.41) преобразование Лапласа при начальных нулевых условиях, получим операторное уравнение

(2.42)

Переходная функция звена

(2.43)

Передаточная функция форсирующего звена на основании (2.42) запишется как

(2.44)

Комплексный коэффициент передачи форсирующего звена получается путём замены p на jω в выражении (2.44):

(2.45)

или

(2.46)

где

(2.47)

Годограф W(jω) и частотные характеристики представлены на рисунке 2.15, а…в.

Рисунок 2.15

Логарифмическая амплитудно-фазовая характеристика

. (2.48)

Асимптотические характеристики состоят из двух полупрямых

(2.49)

Отсюда видно, прямая амплитудно-фазовая характеристика форсирующего звена аналогична инверсной характеристике инерционного звена первого порядка. Это, в свою очередь, отражается на точных логарифмических амплитудных и фазовых характеристиках (рисунок 2.15, г).

Так же, как и дифференцирующее звено, форсирующее звено в идеальном виде не может быть реализовано. В реальных форсирующих устройствах всегда имеются малые параметры, создающие инерционность; они характеризуются полиномом в знаменателе W(p), порядок которого выше, чем порядок числителя.

Добавить комментарий

Закрыть меню