Свойства графика функции

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p. Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x. Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

График степенной функции y = x p с иррациональным показателем при различных значениях показателя степени p.

Степенная функция с отрицательным показателем p < 0

Область определения:x > 0
Множество значений:y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения:x ≥ 0
Множество значений:y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат:x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0.
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения:x ≥ 0
Множество значений:y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат:x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0.
При x = 1, y(1) = 1 p = 1

2) A^x

1. Областью определения показательной функции будет являться множество вещественных чисел.

2. Область значений показательной функции будет являться множество всех положительных вещественных чисел. Иногда это множество для краткости записи обозначают как R+.

3. Если в показательной функции основание a больше единицы, то функция будет возрастающей на всей области определения. Если в показательной функции для основания а выполнено следующее условие 0<a

4. Справедливы будет все основные свойства степеней. Основные свойства степеней представлены следующим равенствами:

ax*ay = a(x + y);

(ax)/(ay) = a(x-y);

(a*b)x = (ax)*(ay);

(a/b)x = ax/bx;

(ax)y = a(x * y).

Данные равенства будут справедливы для все действительных значений х и у.

5. График показательной функции всегда проходит через точку с координатами (0;1)

6. В зависимости от того возрастает или убывает показательная функция, её график будет иметь один из двух видов.

На следующем рисунке представлен график возрастающей показательной функции: a>0.

На следующем рисунке представлен график убывающей показательной функции: 0<a<1.


И график возрастающей показательной функции и график убывающей показательной функции согласно свойству, описанному в пятом пункте, проходят через точку (0;1).

7. Показательная функция не имеет точек экстремума, то есть другими словами, она не имеет точек минимума и максимума функции. Если рассматривать функцию на каком-либо конкретном отрезке, то минимальное и максимальное значения функция будет принимать на концах этого промежутка.

8. Функция не является четной или нечетной.

Показательная функция это функция общего вида. Это видно и из графиков, ни один из них не симметричен ни относительно оси Оу, ни относительно начала координат.

Определение. Функция вида называется показательной функцией.

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений aобъясняется следующими обстоятельствами:

a = 0 Выражения вида 0x определено при x > 0 и в этом случае тождественно равно нулю.
a = 1 Выражение 1x определено при всех x, имеет постоянное значение (тождественно единице).
a < 0 Возможно возведение в целую степень или в рациональную степень с нечётным знаменателем.

Само аналитическое выражение ax в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения xy точка x = 1; y = 1входит в область допустимых значений.

Построить графики функций: и .

Добавить комментарий

Закрыть меню