Состав воздуха атмосферы

Химический состав воздуха имеет важное значение в осуществлении дыхательной функции. Атмосферный воздух – это смесь газов: кислорода, углекислого газа, аргона, азота, неона, криптона, ксенона, водорода, озона и др. Кислород – наиболее важен. В покое человек поглощает 0,3 л/мин. При физической деятельности потребление кислорода возрастает и может достигать 4,5 –8 л/мин Колебания содержания кислорода в атмосфере невелики и не превышают 0.5%. Если содержание кислорода уменьшается до 11-13%, появляются явления кислородной недостаточности. Содержание кислорода 7-8% могут привести к смерти. Углекислый газ – без цвета и запаха, образуется при дыхании и гниении, сгорании топлива. В атмосфере составляет 0,04%, а в промзонах – 0,05-0.06%. При большом скоплении людей может увеличиваться до 0,6 – 0,8%. При продолжительном вдыхании воздуха с содержанием 1-1,5% углекислого газа отмечается ухудшение самочувствия, а при 2-2,5% — патологические сдвиги. При 8-10% потеря сознания и смерть, воздух имеет давление, называемое атмосферным или барометрическим. Оно измеряется в миллиметрах ртутного столба (мм.рт.ст.), гектопаскалях (гПа), миллибарах (мб). Нормальным принято считать давление атмосферы на уровне моря на широте 45˚ при температуре воздуха 0 ˚С. Оно равно 760 мм.рт.ст. (Воздух в помещении считается недоброкачественным, если он содержит 1% углекислого газа. Эта величина принимается как расчетная при проектировании и устройстве вентиляции в помещениях.

Загрязнения воздуха. Окись углерода – газ без цвета и запаха, образуется при неполном сгорании топлива и поступает в атмосферу с промвыбросами и выхлопными газами двигателей внутреннего сгорания. В мегаполисах его концентрация может доходить до 50-200мг/м3. При курении табака окись углерода попадает в организм. Окись углерода — кровяной и общетоксический яд. Она блокирует гемоглобин, он теряет способность переносить кислород к тканям. Острое отравление происходит при концентрации окиси углерода в воздухе в 200-500 мг/м3. При этом наблюдается головная боль, общая слабость, тошнота, рвота. Предельно допустимая концентрация среднесуточная 0 1 мг/м3, разовая – 6 мг/м3. Воздух могут загрязнять сернистый газ, сажа, смолистые вещества, окислы азота, сероуглерод.
Микроорганизмы. В небольших количествах всегда находятся в воздухе, куда они заносятся с почвенной пылью. Попадающие в атмосферу микробы инфекционных заболеваний быстро погибают. Особую опасность в эпидотношении представляет воздух жилых помещений и спортсооружений. Например, в борцовских залах наблюдается содержание микробов до 26000 в 1м3 воздуха. Аэрогенные инфекции в таком воздухе очень быстро распространяются.
Пыль представляет собой легкие плотные частицы минерального или органического происхождения, попадая в легкие пыль, там задерживается и вызывает различные заболевания.

Производственная пыль (свинцовая, хромовая) может вызвать отравления. В городах пыль не должна превышать 0,15 мг/м3.Спортплощадки необходимо регулярно поливать, иметь зеленую зону, проводить влажную уборку. Для всех предприятий, загрязняющих атмосферу, установлены санитарно-защитные зоны. В соответствии с классом вредности они имеют разные размеры: для предприятий 1 класса – 1000 м, 2 – 500 м, 3 – 300 м, 4 –100 м, 5 – 50 м. При размещении спортсооружений вблизи предприятий необходимо учитывать розу ветров, санитарно-защитные зоны, степень загазованности воздуха и др.
Одним из важных мероприятий по охране воздушной среды являются предупредительный и текущий санитарный надзор и систематический контроль состояния атмосферного воздуха. Он производится с помощью автоматизированной системы мониторинга.
Чистый атмосферный воздух у поверхности Земли имеет следующий химический состав: кислород – 20,93%, углекислый газ – 0,03-0,04%,азот – 78,1%, аргон, гелий, криптон 1%.
В выдыхаемом воздухе кислорода на 25% меньше, а углекислого газа – в 100 раз больше.
Кислород. Важнейшая составная часть воздуха. Он обеспечивает течение окислительно-восстановительных процессов в организме. Взрослый человек в покое потребляет 12 л кислорода, при физической работе в 10 раз больше. В крови кислород находится в связи с гемоглобином.
Озон. Химически неустойчивый газ, способен поглощать солнечную коротковолновую ультрафиолетовую радиацию, губительно действующую на все живое. Озон поглощает длинноволновую инфракрасную радиацию, исходящую от Земли, и тем самым препятствует ее чрезмерному охлаждению (озоновый слой Земли). Под воздействием УФО озон разлагается на молекулу и атом кислорода. Озон – бактерицидное средство при обеззараживании воды. В природе он образуется при электрических разрядах, в процессе испарения воды, при УФО, во время грозы, в горах и в хвойных лесах.
Углекислый газ. Образуется в результате окислительно-восстановительных процессов, протекающих в организме людей и животных, горения топлива, гниения органических веществ. В воздухе городов концентрация углекислого газа увеличена за счет промышленных выбросов – до 0,045%, в жилых помещениях – до 0,6-0,85. Взрослый человек в покое выделяет 22 л углекислоты в час, а при физической работе – в 2-3 раза больше. Признаки ухудшения самочувствия у человека появляются только при продолжительном вдыхании воздуха, содержащего 1-1,5% углекислого газа, выраженные функциональные изменения – при концентрации 2-2,5% и резко выраженные симптомы (головная боль, общая слабость, одышка, сердцебиение, понижение работоспособности) – при 3-4%. Гигиеническое значение углекислого газа заключается в том, что он служит косвенным показателем общего загрязнения воздуха. Норма углекислого газа в спортзалах – 0,1%.
Азот. Индифферентный газ, служит разбавителем других газов. Повышенное вдыхание азота может оказать наркотическое действие.
Окись углерода. Образуется при неполном сгорании органических веществ. Не обладает ни цветом, ни запахом. Концентрация в атмосфере зависит от интенсивности автомобильного движения. Проникая через легочные альвеолы в кровь, она образует карбооксигемоглобин, в результате гемоглобин теряет способность переносить кислород. Предельно допустимая среднесуточная концентрация окиси углерода составляет 1мг/м3. Токсические дозы окиси углерода в воздухе составляют 0,25-0,5 мг/л. При длительном воздействии головная боль, обморок, сердцебиение.
Сернистый газ. Он поступает в атмосферу в результате сжигания топлива, богатого серой (каменный уголь).

Образуется при обжиге и плавлении сернистых руд, при крашении тканей. Он раздражает слизистые глаз и ВДП. Порог ощущения 0,002-0,003мг/л. Газ вредно действует на растительность, особенно хвойные породы деревьев.
Механические примеси воздуха поступают в виде дыма, копоти, сажи, измельченных частиц почвы и других твердых веществ. Запыленность воздуха зависит от характера почвы (песок, глина, асфальт), ее санитарного состояния (полив, уборка), от загрязнения атмосферы промышленными выбросами, санитарного состояния помещений.
Пыль механически раздражает слизистые оболочки ВДП и глаз. Систематическое вдыхание пыли вызывает заболевания органов дыхания. При дыхании через нос задерживается до 40-50% пыли. Микроскопическая пыль, долго находящаяся во взвешенном состоянии наиболее неблагоприятна в гигиеническом отношении. Электрозаряженность пыли усиливает ее способность проникать в легкие и задерживаться в них. Пыль. содержащая свинец, мышьяк, хром и др. ядовитые вещества, вызывает типичные явления отравления, причем при проникновении не только при вдыхании, но и через кожу и ЖКТр. В запыленном воздухе значительно уменьшается интенсивность солнечной радиации и ионизация воздуха. Для профилактики неблагоприятного воздействия пыли на организм жилые дома располагают к загрязнителям воздуха с наветренной стороны. Между ними устраиваются санитарно- защитные зоны шириной 50-1000 м и более. В жилых помещениях систематическая влажная уборка, проветривание помещений, смена обуви и верхней одежды, на открытых площадках использование не пылящих грунтов и полив.
Микроорганизмы воздуха. Бактериальное загрязнение воздуха, как и других объектов внешней среды (вода, почва), представляет опасность в эпидемиологическом плане. В воздухе находятся различные микроорганизмы: бактерии, вирусы, плесневые грибки, дрожжевые клетки. Самым распространенным является воздушно-капельный способ передачи инфекций: в воздух поступает большое количество микробов, при дыхании попадающих в дыхательные пути здоровых людей. Например, при громком разговоре, а тем боле при кашле и чихании мельчайшие капельки разбрызгиваются на расстояние 1-1,5 м и с воздухом распространяются на 8-9 м. Эти капельки могут находиться во взвешенном состоянии 4-5 часов, но в большинстве случаев оседают через 40-60 минут. В пыли вирус гриппа и дифтерийные палочки сохраняют жизнеспособность 120-150 дней. Существует известная взаимосвязь: чем больше пыли в воздухе помещений, тем обильнее в нем содержание микрофлоры.

Образование

Какую структуру имеет атмосфера?

Воздушная оболочка Земли состоит из нескольких слоёв, которые обладают отличительными особенностями.

  • Тропосфера. Это самый нижний и плотный слой атмосферы. В нём сосредоточено 80% воздуха. Его толщина варьируется в зависимости от расположения: в районе экватора она больше, чем над полюсами. Именно здесь формируется погода, образуются туман и облака. Максимальная толщина тропосферы достигает 17 километров.
  • Стратосфера. В этом слое, находящимся на высоте 50 км, наблюдается обратное, нежели в тропосфере, изменение температуры с высотой – она повышается. Здесь находится озоновый слой и содержится минимальное количество молекул воды. В стратосфере на высоте 20 километров образуется озоновый слой.
  • Мезосфера. Здесь формируются облака, которые состоят из кристалликов льда, и наблюдается уменьшение плотности воздуха. Мезосфера находится на расстоянии 80-85 километров от поверхности земли и имеет температуру минус 90 градусов по Цельсию.
  • Термосфера. Здесь в результате столкновения частиц воздуха с космическими возникает особое свечение, называемое «полярным сиянием». Этот слой также имеет максимальную в атмосфере температуру – плюс 1500 градусов по Цельсию.
  • Экзосфера. Она простирается до высоты 20000 километров и имеет второе название «корона Земли» из-за рассеянной формы своих границ.

Что загрязняет атмосферу?

Чем хуже экологическая обстановка района, тем больше посторонних веществ содержится в воздухе и тем опаснее он для жизни человека и животных. С развитием цивилизации негативное воздействие на воздушную оболочку Земли сильно увеличилось. Промышленные предприятия, автомобильный и железнодорожный транспорт, инновационные блага цивилизации (кондиционеры, охладительные установки и др.) загрязняют окружающее пространство, что приводит к уменьшению озонового слоя, образованию смога и кислотных дождей.

Сегодня во всём мире отдаётся предпочтение экологически чистым технологиям и транспорту, но полный переход на такие производства потребует определённого количества времени и больших материальных затрат и продлится довольно долго.

Ещё 30 лет назад мы удивлялись, когда слышали о том, что в западных странах продают простую питьевую воду в бутылках. Сегодня любой житель большого города, более или менее заботящийся о своём здоровье, не станет пить то, что течёт из крана в наших квартирах. Приобретение воды для утоления жажды и приготовления пищи стало нормой.

В крупных городах Китая началась продажа чистого воздуха в жестяных банках. А раньше такие факты описывались только в фантастических рассказах. То, из чего состоит воздух сегодня, зависит от каждого землянина. Любой человек может очень много сделать для окружающей среды, выполняя простые правила каждый день: не мыть машину в природных водоёмах, вовремя тушить костры, бросить курить, начать жечь мусор и листву в специально отведённых местах и др. Ведь нам очень важно знать, каким воздухом будут дышать на Земле наши потомки! И будут ли дышать…

Роль и значение основных газов атмосферного воздуха

Состав и строение атмосферы.

Атмосфера – газовая оболочка Земли. Вертикальная протяженность атмосферы более трех земных радиусов (средний радиус равен 6371 км) а масса — 5,157х1015 т, что составляет примерно миллионную от массы Земли.

В основу деления атмосферы на слои в вертикальном направлении положено следующее:

— состав атмосферного воздуха,

— физико-химические процессы;

— распределение температуры по высоте;

— взаимодействие атмосферы с подстилающей поверхностью.

Атмосфера нашей планеты представляет собой механическую смесь различных газов, в том числе водяного пара, а также некоторого количества аэрозолей. Состав сухого воздуха в нижнем 100 км остается практически постоянным. Чистый и сухой воздух, в ко­тором нет водяного пара, пыли и других примесей, представляет со­бой смесь газов, главным образом азота (78 % объема воздуха) и ки­слорода (21 %). Немного менее одного процента составляет аргон и в очень малых количествах находится множество других газов — ксе­нон, криптон, углекислый газ, водород, гелий и др. (табл. 1.1).

Азот, кислород и другие составляющие атмосферного воздуха нахо­дятся в атмосфере всегда в газообразном состоянии, так как критические температуры, то есть температуры, при которых они могут находиться в жидком состоянии, много ниже температур, наблюдаемых у поверхно­сти Земли. Исключение составляет углекислый газ. Однако для перехода в жидкое состояние кроме температуры необходимо еще достижение состояния насыщения. В атмосфере углекислого газа немного (0,03 %) и он находится в виде отдельных молекул, равномерно распределенных среди молекул других атмосферных газов. За последние 60-70 лет его содержание увеличилось на 10-12%, под влиянием деятельности человека.

Больше других подвержено изменению содержание водяного пара, концентрация которого у поверхности Земли при высокой температуре может достигать 4%. С увеличением высоты и понижением температуры содержание водяного пара резко убывает ( на высоте 1,5-2,0 км – наполовину и в 10-15 раз от экватора к полюсу).

Масса твердых примесей за последние 70 лет в атмосфере северного полушария возросла примерно в 1,5 раза.

Постоянство газового состава воздуха обеспечивается интенсив­ным перемешиванием нижнего слоя воздуха.

Газовый состав нижних слоев сухого воздуха (без водяного пара)

Газ Относительная Критическая
в % объема воздуха молекулярная масса температура
Азот N2 78,09 28,01 -147 °С
Кислород 02 20,95 31,99 -119 °.С
Аргон Аг 0,93 39,94
У гл. газ С02 0,03 44,00 31 °С
Гелий Не 5,24-Ю-4 4,00 -268 °С
Водород Н2 5,00-10″5 2,00 -240 °С
Озон 03 1,00-10″6 47,99
Сухой воздух 28,96

Роль и значение основных газов атмосферного воздуха

КИСЛОРОД (О) жизненно необходим почти для всех обитателей планеты. Это активный газ. Он участвует в химических реакциях с другими газами атмосферы. Кислород активно поглощает лучистую энергию, особенно очень короткие волны длиной менее 2.4 мкм. Под действием солнечного ультрафиолетового излучения (X < 03 мкм), молекула кислорода распадается на атомы. Атомарный кислород, со­единяясь с молекулой кислорода, образует новое вещество — трех­атомный кислород или озон (Оз). Озон в основном находится на больших высотах. Там егороль для планеты исключительно благо­творна. У поверхности Земли озон образуется при грозовых разрядах.

В отличие от всех других газов в атмосфере, которые не имеют ни вкуса, ни запаха, озон имеет характерный запах. В переводе с грече­ского языка слово «озон» означает «остро пахнущий». После грозы этот запах приятен, он воспринимается как запах свежести. В больших количествах озон является отравляющим веществом. В городах с большим количеством автомобилей, а значит и большими выбросами автомобильных газов, в безоблачную или малооблачную погоду под действием солнечных лучей образуется озон. Город окутывается жел­то-синим облаком, видимость ухудшается. Это фотохимический смог.

АЗОТ (N2) — нейтральный газ, он, не вступает в реакции с други­ми газами атмосферы, не участвует в поглощении лучистой энергии.

До высот 500 км атмосфера в основном состоит из кислорода и азота.

При этом, если в нижнем слое атмосферы преобладает азот, то на больших высотах кислорода больше, чем азота.

АРГОН (Аг) — нейтральный газ, в реакции не вступает, в погло­щении и излучении лучистой энергии не участвует. Аналогично — ксенон, криптон и многие другие газы. Аргон — тяжелое вещество, в высоких слоях атмосферы его очень мало.

УГЛЕКИСЛОГО ГАЗА (С02) в атмосфере в среднем 0,03 %. Этот газ очень необходим растениям и активно ими поглощается. Фактиче­ское количество его в воздухе может несколько изменяться. В индуст­риальных районах его количество может увеличиваться до 0.05 %. В сельской местности, над лесами, полями его меньше. Над Антаркти­дой примерно 0,02 % углекислого газа, т. е. почти на Уз меньше сред­него его количества в атмосфере. Столько же и даже меньше его над морем — 0.01 — 0.02 %, так как углекислый газ интенсивно поглоща­ется водой.

В слое воздуха, который непосредственно примыкает к земной по­верхности, количество углекислого газа испытывает и суточные коле­бания.

Ночью его больше, днем меньше. Объясняется это тем, что в светлое время суток углекислый газ поглощается растениями, а ночью нет. Растения планеты на протяжении года берут из атмосферы около 550 млрд. т. и возвращают в нее около 400 млрд. т. кислорода.

Углекислый газ полностью прозрачен для солнечных коротковол­новых лучей, но интенсивно поглощает тепловое инфракрасное излу­чение Земли. С этим связана проблема парникового эффекта, по пово­ду которого периодически разгораются дискуссии на страницах науч­ной печати, а, главным образом, в массмедиа.

ГЕЛИЙ (Не) — очень легкий газ. Он поступает в атмосферу из земной коры в результате радиоактивного распада тория и урана. Ге­лий улетучивается в космическое пространство. Скорость убывания гелия соответствует скорости поступления его из недр Земли. От вы­соты 600 км до 16000 км наша атмосфера состоит главным образом из гелия. Это «гелиевая корона Земли» по выражению Вернадского. Ге­лий не вступает в реакции с другими газами атмосферы, не участвует в лучистом теплообмене.

ВОДОРОД (Нг) еще более легкий газ. У поверхности Земли его очень мало. Он поднимается в верхние слои атмосферы. В термосфере и экзосфере атомарный водород становится доминирующим компо­нентом. Водород — это самая верхняя, самая дальняя оболочка нашей планеты. Выше 16000 км до верхней границы атмосферы, то есть до высот 30 — 40 тыс. км, преобладает водород. Таким образом, химиче­ский состав нашей атмосферы с высотой приближается к химическо­му составу Вселенной, в которой водород и гелий — наиболее рас­пространенные элементы. В самой внешней, крайне разряженной части верхней атмосферы, происходит убегание из атмосферы водорода и гелия. Отдельные их атомы имеют для этого достаточно большие скорости.

Ингредиент % объем Мг/м3
Азот (N2) 78,1 =99,93 9,76×105
Кислород (О2) 20,9 2,98×105
Аргон (Ar) 0,93 1,66×104
Диоксид углерода (СО2) 0,03 5,89×102
Инертные газы 10-3 – 10-6 20 – 0,5
Закись азота (N2O) 5×10-5 0,98
Водород (Н2) 5×10-5 0,045
Озон (О3) 2×10-6 0,042

Содержание этих ингредиентов в воздухе, а также паров воды, концентрация которых колеблется в очень широких пределах, формировалось на протяжении многих миллионов лет эволюции Земли и обеспечивает существование всех живых существ, что дышат воздухом.

В воздухе всегда присутствуют в малых количествах разные примеси газообразных веществ природного происхождения – вулканические выделения с недр Земли (SO2, NH3, HCl, H2S, CO, HF и др.) и соединения биогенного происхождения (СО2, СН4, более сложные легкие органические соединения). Их концентрация в незагрязнённом воздухе составляет на уровне мкг/м3 (кроме СО2) и изменяется в очень широких пределах.

Наконец, в воздушном бассейне промышленных зон и больших городов, а также в воздухе цехов различных предприятий содержится большое количество газообразных веществ антропогенного происхождения – NO2, SO2, CO2, NH3, H2S, Cl2, Br2, HF, HCl, HBr, AsH3, PH3, галогенорганических соединений, органических кислот, эфиров, альдегидов, спиртов, кетонов, амино- и нитросоединений, ароматических углеводородов, серосодержащих органических соединений, пестицидов и т.д. Для большинства из них установлены нормы ПДК, которые колеблются в широких пределах – от 3 мг/м3 (СО) до 0,001 мг/м3 (РН2) и значительно меньше.

Кроме этого, в атмосфере содержатся не только газообразные вещества, а также большое количество твёрдых и редких аэрозолей – пыли, дыма, высокодисперсных агрегатов растворимых солей различной степени влажности, мелких точек растворов газообразных веществ (SO2, HCl, NO2, органических соединений) и т.д. Аэрозоли находятся в воздухе в динамическом равновесии и длительность их существования зависит от дисперсности частиц и интенсивности турбулентных потоков воздуха.

Аэрозоли в значительной степени являются посредниками конденсации атмосферной влаги. По размерам их делят на 3 группы:

а) мельчайшие (так называемые частицы Айткека) с радиусом
r < 2×10-5 см;

б) большие (r = 2×10-5 – 10-4 см);

в) гигантские (r > 1×10-4 см).

Характер земной поверхности сильно влияет на концентрацию аэрозолей в воздухе (табл. 9).

Таблица 9

Содержание аэрозолей с радиусом r < 2×10-5 см в атмосф. разн. местн.

Характер поверхности N тыс. шт/см3
Океан 0,84 – 4,7
Острова 0,46 – 44
Суша (берег) 1,6 – 33
Горы > 2000 м 0,16 – 5,3
1000 – 2000 м 0,45 – 9,8
50 – 100 м 1,4 – 36
Сельская местность 1 – 67
Город 6 – 110
Промышленный город 50 – 400

Из таблицы видно, что наиболее загрязнён аэрозолями воздух над сушей, особенно в промышленных районах. Наиболее чистым по содержанию аэрозолей является воздух высокогорных районов.

В аэрозолях содержится основная масса химических ингредиентов, которые выпадают на поверхность Земли с атмосферными осадками. Исходя из данных таблицы можно предвидеть, что в различных районах Земли атмосферные осадки содержат разную концентрацию химических ингредиентов. Так, например, для осадков над поверхностью суши бывшего СССР наиболее характерными являются такие интервалы концентраций главных ионов (мг/л):

SO4-2 (3 – 12), Cl- (1 – 3), HCO3- (0,5 – 5), Ca2+ (0,5 – 3), Mg2+ (0,2 – 0,7), Na+ (1 – 2), K+ (0,4 – 1).

Для атмосферных осадков над Тихим и Индийским океанами они несколько другие:

SO42- (1 – 5), Cl- (2 – 12), HCO3- (0,6 – 6), Na+ (2 – 12), K+ (0,5 – 1,5).

Кислотность атмосферных осадков в основном характеризуется величиной рН 5 – 6, хотя при значительном загрязнении атмосферы некоторыми промышленными выбросами (NO2, SO2), она может составлять рН 4,5 – 5 («кислотные дожди»).

Данные о концентрации биогенных элементов, микроэлементов и органических соединений в атмосферных осадках ограничены. Можно заметить, например, что атмосферные осадки над территорией Украины в среднем содержат С орг. 4,5 мг/л, N орг. 0,4 мг/л, аммонийного N 1,25 мг/л, нитратного N 0,6 мг/л, фосфатного Р 0,11 мг/л.

Представление о концентрации некоторых микроэлементов в атмосферных осадках могут дать средние данные, определённые например для дождевых и снеговых вод Японии (мг/л): Si (0,83), Fe (0,11), Zn (0,0042), Cu (0,00083), Mo (6×10-6). Для атмосферных осадков Грузии характерны приблизительно такие же значения (мг/л): Fe (0 – 0,15), Zn (0,003 – 0,013), Cu (0 – 0,008), Mn (0,0001 – 0,015), Pb (0 – 0,03), F (0 – 0,08), Br (0,0002 – 0,045), J (0,004 – 0,020). Значительный интервал колебания концентраций обусловлен тем, что пробы отбирались в зонах промышленных предприятий, больших городов, с/х районов, долин и высокогорий.

Таким образом, в воздухе и в атмосферных осадках, за исключением сильно загрязненных аэрозолями районов, концентрации химических ингредиентов значительно ниже, чем в поверхностных водах суши. Это необходимо учитывать при анализе дождя, снега, льда и особенно воздуха.

Процентное содержание — воздух

Cтраница 1

Процентное содержание воздуха округлено.  

Общий анализ газа имеет целью определение в образце газа процентного содержания воздуха, суммарного содержания двуокиси углерода и других газов кислотного характера, суммарного содержания непредельных углеводородов ( без этилена) и содержание окиси углерода. Анализ производят в газоанализаторе системы ВТИ-2 ( стр.  

Тенденция пламен к обратному удару зависит от вида горючего газа, процентного содержания воздуха в смеси, скорости газовоздушной смеси, диаметра огневых отверстий и температуры газовоздушной смеси.  

Тенденция пламени к обратному удару или проскоку зависит от вида горючего газа, процентного содержания воздуха в смеси, скорости газовоздушной смеси, диаметра устья горелки, или размера горелочных отверстий, температуры верхнего обреза горелки и температуры газовоздушной смеси. Кроме того, на обратный удар в некоторой мере оказывает влияние глубина горелочных отверстий и материал, из которого выполнена газовая горелка.  

Попадание воздуха в малых количествах приводит к толчкам и ударам в гидротормозе, а при заметном процентном содержании воздуха в рабочей жидкости падает производительность, а с ней и поглощаемая гидротормозом мощность.  

Поэтому в этом случае при определении удельного веса определяется также процент кислорода в газе на газоанализирующем аппарате, вычисляется процентное содержание воздуха и соответственно пересчитывается удельный вес на газ без воздуха.  

Для определения положения уровня нужно знать скорость звука в скважине, которая зависит от состава углеводородного газа и давления в межтрубном пространстве, а также процентного содержания воздуха.  

Рисунок 32 относится к смесям с избытком водорода, где процесс лимитируется диффузией кислорода. Здесь по оси абсцисс отложено процентное содержание воздуха в смеси. Кривая а на каждом из этих рисунков представляет стационарный разогрев, рассчитанный с учетом влияния стефановского потока ( последнее, ввиду малого процентного содержания диффундирующего газа в смеси, незначительно), но без поправок на термодиффузию и излучение. Кривая Ъ представляет стационарный разогрев поверхности, рассчитанный с учетом термодиффузии.

В смесях, где процесс лимитируется диффузией более легкого газа, термодиффузия повышает разогрев поверхности, потому что термодиффузионный поток направлен в этом случае так же, как и обычный диффузионный поток, и суммарная скорость диффузии оказывается поэтому больше, чем без учета термодиффузии.  

Пар из главных эжекторов поступает в нижнюю часть каждой ступени конденсатора и движется вверх против направления движения воды. По мере продвижения пара происходит его конденсация, количество пара уменьшается, а процентное содержание воздуха и его парциальное давление в смеси увеличиваются. В начале процесса конденсации пара возрастание парциального давления воздуха очень мало и резко повышается в верхней части, вблизи патрубка 9, через который производится отсос воздуха вспомогательными эжекторами. Общее давление смеси в конденсаторе практически не изменяется, так как из-за небольшой скорости движения пара падение давления от низа конденсатора до верха очень мало и может не учитываться при рассмотрении процессов в конденсаторе.  

Можно также производить разбивку трубок на всей доске с одинаковым шагом, но при этом рекомендуется зону первых рядов выполнять зубчатой с относительно неглубокими впадинами во избежание смешения пара с различным содержанием воздуха, которое в случае прохождения пара через глубокие впадины происходит при соприкосновении его с последующими трубками. В конце глубоких впадин пар, поступивший в конденсатор непосредственно из турбины, будет содержать ничтожно малое количество воздуха, тогда как пар, прошедший ряды трубок между впадинами и частично сконденсировавшийся, будет иметь гораздо большее процентное содержание воздуха. Поэтому смесь, которую образуют пар из впадин и паро-воздушная смесь, прошедшая через ряды трубок, содержит больше воздуха, чем чистый пар из впадин, а это приводит к снижению эффективности работы трубок соответствующей зоны конденсатора и ухудшению его работы в целом.  

Как видно из таблицы, на 1000 см3 воды приходится почти 30 см3 воздуха. Удалить такое количество воздуха из воды нелегко. Даже самая тщательная дегазация или анаэрация исходной воды может уменьшать процентное содержание воздуха во льду лишь до минимума, равного растворимости воздуха в воде при температуре ее кипения. Количество воздуха, находящегося в воде после ее кипячения или анаэрации, остается еще заметным, и, что еще важнее, переменным, в зависимости от того, находилась ли и сколько времени анаэри-рованная вода в соприкосновении с воздухом. При медленном замерзании воды прослойки воздуха ( или воды) во льду оказываются меньшими, чем при быстром замерзании.  

Страницы:      1    2

Добавить комментарий

Закрыть меню