Радиорелейная станция

Особенности тропосферной связи

Тропосферная радиосвязь, дальняя радиосвязь, основанная на использовании явления переизлучения электромагнитной энергии в электрически неоднородной тропосфере при распространении в ней радиоволн; осуществляется в диапазонах дециметровых и сантиметровых волн.

Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

Электрическая неоднородность тропосферы (неоднородность её диэлектрической проницаемости) обусловлена случайными локальными изменениями температуры, давления и влажности воздуха, а также регулярным уменьшением этих величин с увеличением высоты.

Переизлучение энергии происходит в области пересечения диаграмм направленности передающей и приёмной антенн.

Расстояние между пунктами передачи и приёма может
достигать 1 000 км.

Однако на практике обычно сооружают линии радиорелейной связи, в которых Тропосферная радиосвязь используют во всех звеньях линии или только в некоторых из них.

Протяжённость таких линий достигает несколько тыс. км.

Для тропосферной связи могут использоваться частоты в диапазоне от 30мГц до 10 ГГц, при этом стараются использовать более высокочастотный диапазон, где легче получить антенны с узкой диаграммой направленности и кроме того более широкую полосу частот , для обеспечения многоканальной связи.

Схема радиорелейной линии тропосферной связи:

  • О и П – оконечная и промежуточная приёмо–передающие радиостанции;
  • R – расстояние между станциями (по дуге земной поверхности);
  • 3 – радиопередатчики и радиоприемники оконечных и промежуточных станций;
  • 2, 4 – приемо–передающие антенны оконечных и промежуточных станций;
  • 5 – переизлучающие области тропосферы.
    Энергетические параметры современного приемопередающего оборудования позволяют создавать:

  • — до 120…240 телефонных каналов в одном высокочастотном стволе при R = 150…250 км и
  • — до 12 каналов при R = 800…1 000 км.

Особенности связи:

  • – Большое затухание
    Из–за рассеивания распространения по трассе большой протяженности.

    Это приводит к необходимости использования передатчиков с большой мощностью, антенн с большим коэффициентом усиления , приемников с высокой чувствительностью, малошумящих усилителей

  • – Наличие глубоких замираний
    Принимаемые сигналы подвержены быстрым и медленным замираниям. Медленные замирания обусловлены метеорологическими условиями. Быстрые замирания обусловлены случайными кратковременными изменениями электрических свойств объема рассеивания и интерференцией лучей в точке приема, которая в свою очередь обусловлена многолучевостью сигнала
  • – Потери коэффициента усиления антенны
    При увеличении размеров антенны реальный Кус растет меньше, чем теоретический расчетный т.к. при увеличении направленности антенны уменьшается объем рассеивания и соответственно плотность электромагнитной энергии в точке приема.
  • – Наличие «мертвой зоны»
    50–100 км
  • – Связь на большие расстояния Возможно обеспечение без использования промежуточных ретрансляторов.
  • – Использование высоких частот
    Возможно обеспечение большого количества каналов.

В начало страницы

Особенности
тропосферной связи

Основные принципы радиорелейной связи

Структура радиорелейной системы передачи. Основные понятия и определения. Радиорелейный ствол. Многоствольные РРСП. Диапазоны частот, используемые для радиорелейной связи. Планы распределения частот.

Под радиорелейной связью понимают радиосвязь, основанную на ретрансляции радиосигналов дециметровых и более коротких волн станциями, расположенными на поверхности Земли. Совокупность технических средств и среды распространения радиоволн для обеспечения радиорелейной связи образует радиорелейную линию связи.

Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются только в пределах прямой видимости. Поэтому радиорелейную линию связи на большие расстояния строят в виде цепочки приемно-передающих радиорелейных станций (РРС), в которой соседние РРС размещают на расстоянии, обеспечивающем радиосвязь прямой видимости, и называют ее радиорелейной линией прямой видимости (РРЛ).

Рисунок 1.1 – К пояснению принципа построения РРЛ

Обобщенная структурная схема многоканальной РСП показана на рис. 1.3.

Рис. Обобщенная структурная схема многоканальной радиосистемы пере­дачи:

1,7 — каналообразующее и групповое оборудование;

2,6 — соединительная линия;

3, 5 — оконечное оборудование ствола;

4 – радиоствол

Пролет (интервал) РРЛ — это расстояние между двумя ближайшими станциями.

Участок (секция) РРЛ — это расстояние между двумя ближайшими обслуживаемыми станциями (УРС или ОРС).

Каналообразующее и групповое оборудование обеспечивает формирование группового сигнала из множества подлежащих передаче первичных сигналов электросвязи (на передающем конце) и обратное преобразование группового сиг­нала в множество первичных сигналов (на приемном конце). Указанное оборудо­вание располагается обычно на сетевых станциях и узлах коммутации первичной сети ЕАСС.

Станции РСП, в том числе те, на которых производятся выделение, вве­дение и транзит передаваемых сигналов, как правило, территориально уда­лены от сетевых станций и узлов коммутации, поэтому в состав большин­ства РСП входят проводные соединительные линии.

Для формирования радиосигнала и передачи его на расстояние посред­ством радиоволн используются различные радиосистемы связи. Радиосис­тема связи представляет собой комплекс радиотехнического оборудования и других технических средств, предназначенный для организации радиосвязи в заданном диапазоне частот с использованием определенного меха­низма распространения радиоволн. Вместе со средой (трактом) распро­странения радиоволн радиосистема связи образует линейный тракт или ствол. Ствол РСП состоит из оконечного оборудования ствола и радиоствола. Оборудование ствола располагается на оконечных и ре­трансляционных станциях.

В оконечном оборудовании ствола на передающем конце формируется ли­нейный сигнал, состоящий из группового и вспомогательных служебных сигна­лов (сигналов служебной связи, пилот-сигналов и др.), которым модулируются высокочастотные колебания. На приемном конце производятся обратные опера­ции: демодулируется высокочастотный радиосигнал и выделяются групповой, а также вспомогательные служебные сигналы. Оконечное оборудование ствола располагается на оконечных станциях РСП и на специальных ретрансляционных станциях.

Назначением радиоствола является передача модулированных радиосигна­лов на расстояние с помощью радиоволн. Радиоствол называется простым, если в его состав входят лишь две оконечные станции и один тракт распространения радиоволн, и составным, если помимо двух оконечных радиостанций он содер­жит одну или несколько ретрансляционных станций, обеспечивающих прием, преобразование, усиление и повторную передачу радиосигналов. Необходи­мость использования составных радиостволов обусловлена рядом факторов, основными из которых являются протяженность РСЦ, ее пропускная способ­ность и механизм распространения радиоволн.

Структурная схема ствола двусторонней РСП изображена на рисунке

Рис. 1.4. Структурная схема ствола двусторонней радиосистемы передачи:

1 -конечное оборудование;

2 — передающее оборудование;

3 — приемное оборудова­но;

4 -передатчик;

5 — приемник;

6 -фидерный тракт;

7 -антенна;

8 — тракт распро­странения радиоволн;

9 — помехи (внутрисистемные и внешние)

От оконечного передающего оборудования 2 ствола ^ 1 на вход радио­ствола поступает высокочастотный радиосигнал, модулированный линей­ным сигналом. В радиопередатчике 4 мощность радиосигнала увеличивает­ся до номинального значения, а его частота преобразуется для переноса спектра в заданный диапазон частот. По фидерному тракту 6передаваемые радиосигналы направляются в антенну 7, которая обеспечивает излучение радиоволн в открытое пространство в нужном направлении. При этом в большинстве современных двусторонних РСП для передачи и приема ра­диосигналов противоположных направлений используется общий антенно-фидерный тракт. В открытом пространстве (тракте распространения 8) ра­диоволны распространяются со скоростью, близкой к скорости света с=3*108 м/с. Часть энергии радиоволн, приходящих от радиостанции 1, улавливается антенной 7, находящейся на оконечной радиостанции 2. Энергия принятого радиосигнала от антенны 7 по фидерному тракту 6 на­правляется в радиоприемник 5, где осуществляются частотная селекция принимаемых радиосигналов, обратное преобразование частоты и необхо­димое усиление. С выхода радиоствола принятый радиосигнал поступает на оконечное оборудование ствола 1. Аналогично радиосигналы передают­ся в противоположном направлении от оконечной радиостанции 2 к радио­станции 1. Как видно из рис. 1.4, радиоствол двусторонней РСП состоит из двух радиоканалов, каждый из которых обеспечивает передачу радиосиг­налов в одном направлении. Таким образом, оборудование радиоствола (включающее радиопередатчики, радиоприемники и антенно-фидерные тракты) является по сути дела оборудованием сопряжения оконечного обо­рудования ствола РСП с трактом распространения радиоволн.

Диапазоны частот

Планы распределения частот

Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне 1.2 ГГц (1,7…2,1 ГГц), 500 МГц в диапазонах 4 (3,4… 3,9), 6 (5,67 …6,17) и 8 (7,9… 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

В полосе 400 МГц может быть организовано 6, в полосе 500 МГц — 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи — в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении «туда» используют одну поляризацию волн, а в направлении «обратно»- другую.

Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) — обозначают индексом «НВ». На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом «ВН».

Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В.

Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные — на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе — согласно рис. 1.5,в.

На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

Источник: http://www.connect.ru/article.asp?id=2369

Немного истории

Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной связи, линий, в которых сообщения передавались с помощью аналогового электрического сигнала. Первая такая линия с 5 телефонными каналами появилась в США в 1935 году. Она соединяла города Нью-Йорк и Филадельфию и имела протяженность 200 км.

Благодаря научным достижениям стало возможным создание в 50-х годах комплексов унифицированной приемо-передающей аппаратуры, использующих диапазон сверхвысоких частот и методы частотного и/или временного разделения каналов — многоканальные радиорелейные станции (РРС). К началу 70-х годов во всех развитых странах была создана густая сеть многоканальных линий радиорелейной связи с несколькими тысячами типовых каналов в каждой линии. Появляются РРС на автомобильной платформе (в основном военного назначения), обеспечивающие оперативное развертывание сети радиорелейной связи в районах боевых действий или в районах стихийных бедствий.

В России начало развитию радиорелейной промышленности положено в середине 50-х годов, когда были созданы СКБ, НИИ и группа заводов, затем последовал выпуск нескольких поколений радиорелейных станций (РРС). Первая магистральная радиорелейная система Р-600 (Р-600М, Р-600-МВ, ) была создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем . Все это позволило в 60-70-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14400 каналов тональной частоты. Суммарная протяженность РРЛ в СССР превысила к середине 70-х годов 100 тыс. км.

Опыт применения радиорелейных линий выявил ряд достоинств этого рода связи, которые значительно расширяли возможности связи вообще. Это:
— быстрота и экономичность развертывания (по сравнению с проводной связью) линий связи;
— экономически выгодная, а в ряде случаев и единственно возможная организация многоканальной связи на территориях, имеющих сложный рельеф (лес, горы, болота и пр.), а также в тех местах, где прокладка кабеля нецелесообразна;
— возможность аварийного восстановления связи магистралей проводной связи путем замены ее поврежденных участков;
— качество связи, не уступающее проводной связи.

Необходимость передавать данные — информацию, представленную в дискретном цифровом виде, подтолкнула к созданию цифровых систем передачи, ускорила разработку современных методов преобразования дискретной информации в аналоговую и обратно (методы модуляции и демодуляции), а также методов ее кодирования. Появились системы, способные обмениваться цифровой информацией — системы передачи данных (СПД). Появились цифровые РРС.

Немного теории

Дальность прямой видимости зависит от высоты приемо-передающих антенн двух РРС и может быть вычислена по простой формуле:

H1 H2
где Д — дальность прямой связи, выраженная в километрах;
h1и h2 , — высоты приемо-передающих антенн радиостанций.

Радиоволны дециметрового (ДЦВ) и сантиметрового диапазонов (СВ) распространяются в основном за счет поверхностной волны прямолинейно (потому что дифракция радиоволн этого диапазона выражена слабо). Поэтому связь с ее помощью может быть организована только на дальности прямой видимости. Для того чтобы максимально увеличить расстояние прямой видимости между РРС, их антенны устанавливают на мачтах или башнях высотой 70-100 м и по возможности — на возвышенных местах.

Максимальная дальность радиорелейной связи определяется не только физической прямой видимостью, но и радиовидимостью (для высоких частот критично, чтобы 1-я зона Френеля не касалась поверхности), которая зависит от частотного диапазона используемых РРС, емкости ствола (скорость потока), диаметра антенн и может незначительно отличаться от вычисленной по приведенной формуле.

На равнинной местности расстояние между РРС обычно составляет 40-70 км, в горах и на пересеченной местности оно может быть увеличено за счет установки РРС на возвышенностях или вершинах гор. Если расстояние между РРС превышает пределы прямой видимости, то устанавливают промежуточные (ретрансляционные) РРС. Применение (в отдельных звеньях цепочки) станций тропосферной радиосвязи, которые используют эффект рассеяния радиоволн СВЧ на неоднородностях тропосферы, позволяет увеличить это расстояние до 250-300 км.

Теперь следует сказать о том, почему выбраны диапазоны ДЦВ и СВ. Оказывается, ширина подновременно многим широкополосным радиопередатчикам с шириной спектра сигналов до нескольких десятков МГц. В этих диапазонах низок уровень атмосферных и индустриальных помех радиоприему, а также возможно применение остронаправленных (с малым углом излучения) малогабаритных антенн. Максимальная эффективность связи между двумя РРС достигается в том случае, если размеры антенны соизмеримы с четвертью длины волны. Например, если длина волны равна 100 см, то диаметр антенны должен быть равен 25 см.

Современные цифровые линии связи

Цифровые магистрали, на основе которых строятся современные сети передачи данных, должны соответствовать стандарту SDH (Synchronous Digital Hierarchy — синхронная дискретная иерархия), определяющему основные характеристики линий для цифровой сети передачи данных. Такие линии обеспечивают передачу любых видов данных: текста, звука, речи, изображений и видеофильмов с помощью дискретных электрических сигналов.

Цифровые радиорелейные станции

Современная цифровая РРС — сложный технический комплекс, в который входит приемопередатчик, модем, мультиплексор, приемопередающие антенны, система автоматического резервирования, система телеуправления и телесигнализации, контрольно-измерительная аппаратура, устройства служебной связи, система электропитания. Рассмотрим функции основных устройств: приемопередатчика, модема и мультиплексора.

Приемопередатчик РРС — устройство, которое выполняет функции приема и передачи модулированных электрических колебаний заданных частот. Приемник выделяет электрический сигнал заданной частоты из сигналов, принятых приемной антенной. С выхода приемника сигнал поступает на модулятор. Передатчик вырабатывает модулированный электрический сигнал заданной частоты для последующего его излучения передающей антенной. На вход передатчика сигнал поступает из модулятора.

Один комплект приемопередающей аппаратуры, установленный на РРС, образует ствол. Для увеличения пропускной способности на РРС устанавливают несколько комплектов такой аппаратуры — создают несколько стволов.

Модем РРС — оконечное устройство, служащее для модуляции/демодуляции сигнала. Поступающий из мультиплексора дискретный сигнал модем преобразует в аналоговый (непрерывный) сигнал некоторой промежуточной частоты и передает его в приемопередатчик, а при приеме поступающий из приемопередатчика аналоговый сигнал преобразуется в дискретный. Таким образом, в составе цифрового радиорелейного тракта модем выполняет функции цифрового стыка, который должен соответствовать рекомендациям G.703 MKKTT.

Как правило, в модеме РРС дополнительно создаются:
— речевой канал, позволяющий организовывать служебную телефонную связь;
— канал RS-232 (9600 Бит/с), который может быть использован как дополнительный сервисный канал связи, так и для дистанционного контроля параметров.

В многопролетных системах связи программное обеспечение позволяет проводить дистанционное управленмодемах РPС чаще всего применяются следующие методы модуляции:
— FSK (Frequency Shift Keying) — частотная модуляция (ЧМ), сущность которой заключается в том, что дискретные сигналы 0, 1 передаются гармоническими сигналами (синусоидами), имеющими различные частоты;
— PSK (Phase Shift Keying) — фазовая модуляция, при которой дискретные сигналы 1 и 0 передаются путем переключения двух несущих, сдвинутых на полпериода относительно друг друга. Другой вариант PSK — изменение фазы на 900 в каждом такте при передаче нуля и на 2700 при передаче единицы.

Мультиплексор РРС предназначен для асинхронного объединения нескольких цифровых потоков в один, например Е1 (2048 Мбит/с), E2 (8448 Мбит/с) в сигнал Е2

(8448 Мбит/с) или сигнал E3 (34368 Мбит/с) в соответствии с рекомендацией G.742 (G.751) МККТТ.

В зависимости от места, которое занимает РРС в радиорелейной линии, различают оконечные, промежуточные и узловые РРС. Оконечными называют РРС, расположенные на концах радиорелейной линии; размещенные между оконечными РРС носят название промежуточных. Промежуточные станции, на которых предусмотрено выделение каналов, называют главными. Если на главной станции предусмотрено ответвление на другую радиорелейную линию, то такую РРС называют узловой. Главные и узловые РРС имеют специальное оборудование выделения каналов или ответвления. Как правило, оконечные и главные станции обслуживаются специалистами, а обычные промежуточные — дистанционно контролируются с оконечных и/или главных станций и персонала не имеют.

Наличие этих, так называемых необслуживаемых РРС, позволяет строить не только радиорелейные линии большой протяженности, но и разветвленные радиорелейные сети.

Цифровые радиорелейные линии

Радиорелейные линии на основе цифровых РРС стали важной составной частью цифровых сетей электросвязи — ведомственных, корпоративных, региональных, национальных и даже международных.

РРЛ классифицируют по следующим взаимосвязанным признакам:
— скорость передачи данных (цифрового потока) — пропускная способность, в зависимости от которой различают РРЛ:
— высокоскоростные (скорость передачи свыше 140 Мбит/с);
— среднескоростные (до 52 Мбит/с);
— низкоскоростные (до 8 Мбит/с);

емкость радиорелейной линии (количество стволов и каналов в них), в зависимости от которой различают РРЛ:
— большой емкости;
— средней емкости;
— малоканальные.
— количество пролетов в радиорелейной линии, по которому различаются РРЛ:
— однопролетные;
— многопролетные.

Высокоскоростные большой емкости радедней емкости радиорелейные линии — для создания региональных, зоновых сетей передачи данных и называются зоновыми. Наконец, малоканальные широко используются для организации связи на железнодорожном транспорте, газопроводах, нефтепроводах, линиях электропередачи и т. п. Малоканальные радиорелейные линии с подвижными РРС применяются в военных целях.

Полосы радиочастот РРЛ расположены в диапазоне от 2 до 50 ГГц и жестко регламентируются внутри каждой полосы как рекомендациями ITU (Международного союза электросвязи), так и Радиорегламентом Российской Федерации.

При организации связи по цифровой радиорелейной линии должна быть решена проблема выделения частот приема и передачи. Ее решение относится к компетенции ГКРЧ России, и для РЭС всех назначений эта процедура осуществляется в соответствии с и результатами рассмотрения в установленном порядке радиочастотных заявок, поступающих от заявителей.

В ряде случаев, например в условиях больших городов, получение свободных радиочастот на некоторых направлениях затруднительно, что связано с проблемой электромагнитной совместимости с другими радиотехническими системами (РТС). Решение этих проблем — тема отдельного разговора.

Построение цифровых радиорелейных линий

Спектр применения современных цифровых радиолиний достаточно широк, это объясняется тем, что они позволяют:
— оперативно наращивать возможности системы связи путем установки оборудования РРС в помещениях узлов связи, используя антенно-мачтовые устройства и другие сооружения, что уменьшает капитальные затраты на создание радиорелейных линий связи;
— организовать многоканальную связь в регионах со слабо развитой (или с отсутствующей) инфраструктурой связи, а также на участках местности со сложным рельефом;
— развертывать разветвленные цифровые сети в регионах, больших городах и индустриальных зонах, где прокладка новых кабелей слишком дорога или невозможна;
— восстанавливать связь в районах стихийных бедствий или при спасательных операциях и др.

Сеть РРС может строиться как однопролетная линия, многопролетная линия и радиорелейная сеть. Однопролетная РРЛ состоит из двух территориально разнесенных РРС Такие радиолинии могут создаваться для соединения базовых центров сотовой связи, АТС и других аналогичных объектов. Примерами такой структуры могут служить радиолинии, разработанные фирмой Nera (Норвегия). Радиолиния с пропускной способностью 140 Мбит/с для российского телевидения соединила телецентр на Ямском поле с земной станцией спутниковой связи в Клину, обеспечив одновременную передачу 17 телевизионных каналов. РРЛ с пропускной способностью 155 Мбит/с и емкостью 1920 цифровых каналов РФ связала Центробанк с его подразделением, удаленным на 140 км.

Примером радиорелейной сети может служить создаваемая в Киргизской Республике в качестве первичной сети цифровая радиорелейная магистраль из 16 РРС, зри радиолинии с семью другими РТС. Горный рельеф позволил увеличить некоторые пролеты между РРС до 165 км. Сеть охватывает все регионы республики и имеет выходы на наземную станцию спутниковой связи COMSTAT (США) с антенной, направленной на искусственный спутник Intelsat 630, что обеспечивает прямой выход сети связи республики на национальные сети связи многих стран Азии и Европы.

Широкое применение получили малогабаритные, быстро разворачиваемые РРС диапазонов 18, 23 и 36 ГГц, которые способны передавать на расстояние до 25 км как аналоговую (телевизионную), так и цифровую информацию (со скоростью до 34 Мбит/с). Типичное применение цифровых РРС данных диапазонов — организация сетей местной связи, сетей сотовой и транковой связи. В последнем случае, как правило, применяются однопролетные РРЛ — и — .

РТС могут быть использованы также вместо широкополосных оптоволоконных линий, создаваемых в городских условиях для связи между узловыми АТС и другими объектами связи. Такие РРС могут быть встроены в телекоммуникационные сети, отвечающие стандартам SDH/SONET.

Основными направлениями применения радиолиний в этом случае могут быть:
— магистраль. РРЛ вписывается в городские сети SDH/SONET и служит для замыкания колец, для соединения между кольцами и для подключения удаленных узлов доступа. Линия может использоваться как транспортная альтернатива оптоволокну или для его резервирования;
— организация доступа к сети АТМ. РРЛ соединяется с оконечным сетевым устройством АТМ и концентратором доступа АТМ;
— сопряжение между собой сетей АТМ, FAST ETHERNET и других.

В настоящее время появилось большое количество РТС этих диапазонов, которые выпускаются зарубежными и отечественными производителями. На мировом рынке представлены РТС около 15 фирм, в том числе Microwave Network (США), Ceragon Networks.

Предлагают свои малогабаритные РТС и отечественные производители. С 1993-1994 гг. начали выпускаться РРС серии , , семейство станций , , , и ряд других. В тот период эти РРС по техническому уровню и надежности не могли сравниться с зарубежными аналогами.

В дальнейшем положение изменилось, и были разработаны РТС нового поколения — серия станций , станции , , , и ряд других.

Вывод

Инфраструктура мировой и национальных сетей цифровой связи, которая развивается как интегрированная первичная транспортная сеть, обеспечивающая передачу любого вида информации, базируется на комплексном использовании проводной, радио, радиорелейной и спутниковой (космической) связи. Радиорелейная связь занимает в этой структуре свое достойное место.

Вопрос о применении того или иного рода связи или их комбинации в сетевой инфраструктуре диктуется конкретными географическими условиями, а также экономическими, социности страны. Технические средства связи и методы их применения должны быть увязаны в единую систему. Этим обусловливается возрастающее внимание к решению вопросов связи и необходимость дальнейшего развития технических средств и методов эффективного применения всех родов связи, в том числе и радиорелейной.

Добавить комментарий

Закрыть меню