Периодический закон и периодическая система элементов

Периодический закон и периодическая система элементов

⇐ Предыдущая123Следующая ⇒

Периодический закон – один из важнейших законов химии. Менделеев считал, что главной характеристикой элемента является его атомная масса. Поэтому он расположил все элементы в один ряд в порядке увеличения их атомной массы.

Если рассмотреть ряд элементов от Li до F, то можно увидеть, что металлические свойства элементов ослабляются, а неметаллические свойства усиливаются. Аналогично изменяются и свойства элементов в ряду от Na до Cl. Следующий знак К, как Li и Na, является типичным металлом.

Высшая валентность элементов увеличивается от IyLi до VyN (кислород и фтор имеют постоянную валентность, соответственно II и I) и от IyNa до VIIyCl. Следующий элемент К, какLi и Na, имеет валентность I.

В ряду оксидов от Li2O до N2O5и гидроксидов от LiОН до HNO3основные свойства ослабляются, а кислотные свойства усиливаются. Аналогично изменяются свойства оксидов в ряду от Na2O и NaOH до Cl2O7и HClO4. Оксид калия К2О, как и оксиды лития и натрия Li2O и Na2O, является основным оксидом, а гидроксид калия КОН, как и гидроксиды лития и натрия LiOH и NaOH, является типичным основанием.

Аналогично изменяются формы и свойства неметаллов от CH4до HF и от SiH4до HCl.

Такой характер свойств элементов и их соединений, какой наблюдается при увеличении атомной массы элементов, называется периодическим изменением. Свойства всех химических элементов при увеличении атомной массы изменяются периодически.

Это периодическое изменение называется периодической зависимостью свойств элементов и их соединений от величины атомной массы.

Поэтому Д.И. Менделеев сформулировал открытый им закон так:

Свойства элементов, а так же формы и свойства соединений элементов находятся в периодической зависимости от величины атомной массы элементов.

Менделеев расположил периоды элементов друг под другом и в результате составил периодическую систему элементов.

Он говорил, что таблица элементов – плод не только его собственного труда, но и усилий многих химиков, среди которых он особо отмечал «укрепителей периодического закона», открывших предсказанные им элементы.

Для создания современной таблицы потребовалась напряженная многолетняя работа тысяч и тысяч химиков и физиков. Если бы Менделеев был сейчас жив, он, глядя на современную таблицу элементов, вполне мог бы повторить слова английского химика Дж.У.Меллора, автора классической 16-томной энциклопедии по неорганической и теоретической химии. Закончив в 1937, после 15-летней работы, свой труд, он написал с признательностью на титульном листе: «Посвящается рядовым огромной армии химиков.

Их имена забыты, их работы остались»…

Периодическая система –это классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона.

На октябрь 2009 года известно 117 химических элементов (с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые — лишь в следовых количествах). Остальные23 получены искусственно в результате ядерных реакций – это процесс превращения атомных ядер, происходящий при их взаимодействиис элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Первые 112 элементов имеют постоянные названия, остальные — временные.

Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии. Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов в Дармштадте, Германия (в результате бомбардировки свинцовой мишени ядрами цинка). Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий ,Гельмгольций , Венусий , Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113-116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны.

Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды (семейство из 14 химических элементов с порядковыми номерами 58—71, расположенных в VI периоде системы) и актиноиды (семейство радиоактивных химических элементов, состоящее из актиния и 14 подобных ему по своим химическим свойствам) вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.

Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжила приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают, в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также со стереотипностью мышления и невосприятием современной (международной) информации.

В 1969 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы. Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сот вариантов таблицы, при этом учёные предлагают всё новые варианты.

3. Структура периодической системы: периоды, группы, подгруппы

Периодическая система – это графическое выражение периодического закона.

Каждый элемент занимает определённое место (клетку) в периодической системе и имеет свой порядковый (атомный) номер.

Горизонтальные ряды элементов, в пределах которых свойства элементов изменяются последовательно, Менделеев назвал периодами(начинаются щелочным металлом (Li, Na, K, Rb, Cs, Fr) и заканчиваются благородным газом (He, Ne, Ar, Kr, Xe, Rn)).
Исключения: первый период, который начинается водородом и седьмой период, который является незавершённым.

Периоды разделяются на малые и большие. Малые периоды состоят из одного горизонтального ряда. Первый, второй и третий периоды являются малыми, в них находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды). Большие периоды состоят из двух горизонтальных рядов. Четвёртый, пятый и шестой периоды являются большими, в них находятся 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период).Верхние ряды больших периодов называются чётными , нижние ряды – нечётными.

В шестом периоде лантаноиды и в седьмом периоде актиноиды располагаются в нижней части периодической системы
В каждом периоде слева направо металлические свойства элементов ослабевают, а неметаллические свойства усиливаются.

В чётных рядах больших периодов находятся только металлы.

В результате в таблице имеется 7 периодов, 10 рядов и 8 вертикальных столбцов, названных группами–это совокупность элементов, которые имеют одинаковую высшую валентность в оксидах и в других соединениях. Эта валентность равна номеру группы.

Группы — вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Каждая группа состоит из двух подгрупп: главной и побочной. Главная подгруппа – А, содержит элементы малых и больших периодов. Побочная подгруппа – В, содержит элементы только больших периодов. В них входят элементы периодов, начиная с четвёртого.

В главных подгруппах сверху вниз металлические свойства усиливаются, а не металлические свойства ослабляются. Все элементы побочных подгрупп являются металлами.

⇐ Предыдущая123Следующая ⇒

Дата добавления: 2017-01-21; просмотров: 873 | Нарушение авторских прав

Рекомендуемый контект:


Похожая информация:


Поиск на сайте:


Периодический закон и периодическая система химических элементов Д.И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки

12345678910Следующая ⇒

Положительная Отрицательная
— Для многих лю­дей религия играет роль мировоззрения, готовой сис­темы взглядов, принципов, идеалов, объясняя уст­ройство мира и определяя место человека в нем. — Ре­лигиозные нормы — один из мощных социальных регуляторов. Через целую систему ценностей они ре­гулируют общественную и личную жизнь человека. — В вере находят утешение, успокоение, надежду мно­гие миллионы. Религия позволяет компенсировать недостатки несовершенной действительности, обе­щая «Царство Божие», примиряет с земным злом. — В условиях неспособности науки объяснить множест­во природных явлений религия предлагает свои ва­рианты ответа на мучительные вопросы. — Часто рели­гия способствует объединению наций, образованию единых государств. — Исто­рический опыт показывает, что виной многих конф­ликтов, войн являются религиозные различия и не­терпимость. — Часто религия и церковь накладывали запреты на определенные виды де­ятельности, науку, искусство, сковывая творческую силу людей. — Откровенная социальная несправедли­вость, деспотические режимы освящались авторите­том церкви, обещавшей подлинное освобождение только в ином мире.

3. Объясните значение притчи: «У одного крестьянина был сын, который стал плохо себя вести. Испытав все способы влияния, отец придумал следующее: он вкопал против дома столб и после каждого проступка сына вбивал гвоздь в этот столб.

Прошло некоторое время, и на столбе не осталось живого места -весь он был утыкан гвоздями. Эта картина так поразила воображение мальчика, что он начал исправляться. Тогда за каждый его поступок отец стал вытаскивать по одному гвоздю. И вот наступил день, когда послед­ний гвоздь был вытащен, но на мальчика это произвело совсем неожи­данное впечатление: он горько заплакал.

— Что ты плачешь? — спросил его отец. — Ведь гвоздей больше нет?

— Гвоздей-то нет, а дырки остались, — ответил сын»

Прежде чем дать объяснение притчи, назовите определение этого понятия. Притча — это малый поучительный рассказ в литературном жанре, заключающий в себе моральное поучение (премудрость).

ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

по предмету «Химия»

2013

Билет №1 (1)

Периодический закон и периодическая система химических элементов Д.И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

В середине XIX века не существовало теории или закона, связывающих свойства атомов химических элементов с какой-либо их характеристикой.

Д.И. Менделеев, взяв за основу атомную массу, выявил закономерности в изменении свойств веществ.

Временная формулировка периодического закона: Свойства химических элементов, а также формы и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда их атомных ядер (Менделеев считал, что от атомной массы).

Ядро состоит из протонов и нейтронов, и практически вся масса сосредоточена в ядре. При переходе к следующему атому число положительно заряженных частиц – протонов увеличивается на единицу, возрастает и масса атома.

Порядковый номер элемента соответствует числу протонов (p+) и электронов (ē). Менделеев открыл периодическую повторяемость элементов и включил их в группы. Эта периодическая повторяемость обусловлена периодической повторяемостью в строении внешнего электронного уровня. Так, металлы главной подгруппы I группы имеют на последнем уровне ns1, а неметаллы главной подгруппы VII группы ns2np5.

Современная система химических элементов (ПС) состоит из 7 периодов (3 малых, 3 больших и 1 большой незаконченный).

Они располагаются по горизонтали и начинаются с активного металла (кроме I периода) и заканчиваются инертным газом. В периоде происходит уменьшение радиуса атома при увеличении количества электронов и, как следствие, электроотрицательность в периоде увеличивается и происходит уменьшение свойств элементов от металлических через переходные элементы к неметаллическим, а свойства их оксидов изменяется от основных через амфотерные к кислотным. При этом валентность высших оксидов изменяется от I до VII, а валентность в водородных соединениях от IV (IV группа) до I (VII группа).

В периодической системе VIII групп. Это вертикальные столбцы, состоящие из главной (s- и p-элементы) и побочной (d-элементы) подгрупп. В группе радиус атома увеличивается, электроотрицательность уменьшается, и неметаллические свойства усиливаются.

Значение периодического закона для развития науки:

1) Даёт целостное представление о взаимосвязи строения атомов и их свойствах;

2) Объясняет причины схожести и индивидуальности в химическом поведении простых и сложных веществ;

3) Показывает периодическую зависимость свойств простых и сложных веществ от строения атома;

4) Позволил ранее, и сейчас открывать новые химические элементы и предсказать их физические и химические свойства;

Периодический закон и периодическая система Д.И.Менделеева (лекция)

Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их различных соединений.

Работы предшественников Д.И. Менделеева:

1. Классификация Берцелиуса, не потерявшая своей актуальности и в наши дни (металлы , неметаллы)

2. Триады Деберейнера (например литий, натрий, калий)

3. Октавы Ньюлендса

4. Спираль-ось Шанкуртура

5. Кривая Мейера

Участие Д.И. Менделеева в Международном химическом конгрессе а г. Карслруэ (1860), где утвердились идеи атомистики и понятие «Атомный» вес, которое сейчас известно под названием «относительная атомная масса».

Личностные качества великого русского ученого Д.И. Менделеева.

Гениального русского химика отличали энциклопедичность знаний, скрупулезность химического эксперимента, величайшая научная интуиция, уверенность в истинности своей позиции и отсюда неустрашимый риск в отстаивании этой истины. Д.И. Менделеева был великим и замечательным гражданином земли русской.

Д.И.Менделеев расположил все известные ему химические элементы в длинную цепочки по возрастанию их атомных весов и отметил в ней отрезки – периоды, в которых свойства элементов и образованных ими веществ изменялись сходным образом, а именно:

1). Металлические свойства ослабевали;

2) Неметаллические свойства усиливались;

3) Степень окисления в высших оксидах увеличивалась с +1 до +7(+8);

4).Степень окисления элементов в гидроксидах, твердых солеподобных соединениях металлов с водородом возрастала от +1 до +3, а затем в летучих водородных соединениях от -4 до -1;

5) Оксиды от основных через амфотерные сменялись кислотными;

6) Гидроксиды от щелочей, через амфотерные сменялись кислотами.


Выводом его работы стала первая формулировка периодического закона (1 марта 1869 г): свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс.

Периодический закон и строение атома.

Формулировка периодического закона данная Менделеевым была неточной и не полной, т.к. она отражала состояние науки на тот момент, когда о сложном строении атома еще не было известно. Поэтому современная формулировка периодического закона звучит иначе: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от заряда их атомных ядер.

Периодическая система и строение атома.

Периодическая система – это графическое отображение периодического закона.

Каждое обозначение в периодической системе отражает какую-либо особенность или закономерность в строении атомов элементов:

— физический смысл номера элемента, периода, группы;

— причины изменения свойств элементов и образованных ими веществ по горизонтали (в периодах) и по вертикале ( в группах).

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические – усиливаются, т.к.:

1) Увеличиваются заряды атомных ядер;

2) Увеличивается число электронов на внешнем уровне;

3) Число энергетических уровней постоянно;

4) Радиус атома уменьшается

В пределах одной и той же группы ( в главной подгруппе) металлические свойства усиливаются, неметаллические — ослабевают, т.к.:

1). Увеличиваются заряды атомных ядер;

2). Число электронов на внешнем уровне постоянно;

3). Увеличивается число энергетических уровней;

4). Увеличивается радиус атома

В результате этого была дана причинно-следственная формулировка периодического закона: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от изменения внешних электронных структур их атомов.

Значение периодического закона и периодической системы:

1. Позволили установить взаимосвязь между элементами, объединить их по свойствам;

2. Расположить химические элементы в естественной последовательности;

3. Вскрыть периодичность, т.е. повторяемость общих свойств отдельных элементов и их соединений;

4. Исправить и уточнить относительные атомные массы отдельных элементов (у бериллия с 13 на 9);

5. Исправить и уточнить степени окисления отдельных элементов ( бериллий +3 на +2)

6. Предсказать и описать свойства, указать путь открытия еще неоткрытых элементов ( скандия, галлия, германия)

Пользуясь таблицей сравним две ведущие теории химии.

Философские основы общности Периодический закон Д.И.Менделеева Теория органических соединений А.М. Бутлерова
1. 1. Время открытия 1869 г. 1861 г.
II. Предпосылки. 1.Накопление фактологического материала 2. 2. Работа предшественников 3. Съезд химиков в г. Карлсруэ (1860) 4. Личностные качества. Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их многочисленных соединений. Известны многие десятки и сотни тысяч органических соединений, состоящих лищь из немногих элементов: углерода, водорода, кислорода, реже – азота, фосфора и серы.
— Й. Берцеллиус (металлы и неметаллы) — И.В.Деберейнер (триады) — Д.А.Р.Ньюлендс (октавы) — Л.Мейер — Й. Берцеллиус, Ю.Либих, Ж.Дюма (теория радикалов); -Ж.Дюма, Ш.Жерара, О.Лоран (теория типов); — Й. Берцеллиус ввел а практику термин «изомерия»; -Ф.Велер, н.Н. Зинин, М.Бертло, сам А.Бутлеров(синтезы органических веществ, крах витализма); -Ф.А.Кукуле (строение бензола)
Д.И.

Менделеев присутствовал в роли наблюдателя

А.М.Бутлеров не участвовал, но активно изучал материалы съезда. Однако принимал участие в съезде врачей и естествоиспытателей в г. Шпейере (1861), где выступил с докладом » О строении органических тел»
Обоих авторов отличали от других химиков: энциклопедичность химических знаний, умение анализировать и обобщать факты, научное прогнозирование, русский менталитет и русский патриотизм.
III. Роль практики в становлении теории Д.И. Менделеев предсказывает и указывает пути открытия еще неизвестных науке галлия, скандия и германия А.М. Бутлеров предсказывает и объясняет изомерию многих органических соединений. Сам осуществляет многие синтезы

Тест по теме

Периодический закон и периодическая система элементов Д.И. Менделеева

1. Как меняются радиусы атомов в периоде:

а) увеличиваются б) уменьшаются в) не изменяются

2. Как меняются радиусы атомов в главных подгруппах:

а) увеличиваются б) уменьшаются в) не изменяются

3. Как определить число энергетических уровней в атоме элемента:

а) по порядковому номеру элемента б) по номеру группы

в) по номеру ряда г) по номеру периода

4. Как определяется место химического элемента в периодической системе Д.И. Менделеева:

а) количеством электронов на внешнем уровне б) количеством нейтронов в ядре

в) зарядом ядра атома г) атомной массой

5. Сколько энергетических уровней у атома скандия: а) 1 б) 2 в) 3 г) 4

6. Чем определяются свойства химических элементов:

а) величиной относительной атомной массы б) числом электронов на внешнем слое

в) зарядом ядра атома г) количеством валентных электронов

7. Как изменяются химические свойства элементов в периоде:

а) усиливаются металлические б) усиливаются неметаллические

в) не изменяются г) ослабевают неметаллические

8. Укажите элемент, возглавляющий большой период периодической системы элементов: а) Cu (№29) б) Ag (№47) в) Rb (№37) г) Au (№79)

9. У какого элемента наиболее выражены металлические свойства:

а) Магний б) Алюминий в) Кремний

10. У какого элемента наиболее выражены неметаллические свойства:

а) Кислород б) Сера в) Селен

11.В чём основная причина изменения свойств элементов в периодах:

а) в увеличении атомных масс

б) в постепенном увеличении числа электронов на внешнем энергетическом уровне

в) в увеличении числа электронов в атоме

г) в увеличении числа нейтронов я ядре

12. Какой элемент возглавляет главную подгруппу пятой группы:

а) ванадий б) азот в) фосфор г) мышьяк

13.Чему равно число орбиталей на d-подуровне: а)1 б)3 в)7 г)5

14. Чем отличаются атомы изотопов одного элемента:

а) числом протонов б) числом нейтронов в) числом электронов г) зарядом ядра

15. Что такое орбиталь:

а) определённый энергетический уровень, на котором находится электрон

б) пространство вокруг ядра, где находится электрон

в) пространство вокруг ядра, где вероятность нахождения электрона наибольшая

г) траектория, по которой движется электрон

16. На какой орбитали электрон имеет наибольшую энергию: а)1s б)2s в)3s г) 2p

17. Определите какой это элемент 1s22s22p1: а) №1 б) №3 в) №5 г) №7

18. Чему равно число нейтронов в атоме +1531Р а)31 б)16 в)15 д)46

19. Какой элемент имеет строение наружного электронного слоя …3s2p6:

а) неон б) хлор в) аргон г) сера

20. На основании электронной формулы определите, какими свойствами обладает элемент 1s22s22p5:

а) металл б) неметалл в) амфотерный элемент г) инертный элемент

21. Сколько химических элементов в шестом периоде: а)8 б)18 в)30 г)32

22. Чему равно массовое число азота +7N который содержит 8 нейтронов:

Билет №1

1) Периодический закон и периодическая система Д. И. Менделеева в свете теории строения атома.

1869-открыт периодический закон –свойства элементов находится в периодической зависимости от величины зарядов атомов. ПС является графическим отображением периодического закона. Каждый Эл имеет свой Хим знак и атомную массу . По горизонтали делятся на периоды их 7 123-малые периоды 34567-большие. Каждый период начинается щелочным металлом и заканчивается благородным газом.

Слева на право металлические свойства ослабевают и усиливаются неметаллические зашёт увеличения заряда ядра и уменьшения атомного радиуса. По вертикали делятся на группы их 8 каждая группа делится на 2 подгруппы главную (малые периоды) и побочную (больших периодов). Физические св.: 1порядковый№ соответствует заряду ядра 2№периода количеству энергетических уровней 3№группы соответствует количеству электронов на последнем уровне (валентность).

2) Метан — представитель предельных углеводородов. Строение, свойства. применение.

СН4 Н Характерна ковалентная связь. Физические св.: газ без цвета, без запаха почти нерастворим в воде в 2 раза легче воздуха

Н(:)-С-(:)Н (ядовит). Присуши реакции горения замещения разложения. Прим как топливо, растворителей (дихлорметан), для

Н обезболивания ,для производства сажи, Н и ацетилена.

-3) Экспериментальное получение амфотерного гидрооксида и выполнение реакций, характеризующих его химические свойства.

Билет №2

  1. Теория строения органических соединений. Значение теории для развития науки.

В ХIX столетии предъявляло требования к отраслям науки в том числе и органической химии. Например, текстильной промышленности красителями. Для пищевой новые методы переработки сельхоз. продуктов. Начали разрабатываться новые методы синтеза орган веществ. Учёные не могли объяснить валентность углерода в С6Н6, пропан С3Н8. было непонятно, почему могут существовать различные вещества с одинаковой молекулярной массой. Например, глюкоза С6Н12О6 и такая же у фруктозы. Этиловые спирты и диметиловые эфиры имеют одинаковую молекулярную формулу. Они не могли объяснить почему Н и С могут образовывать так много соединений. Ответ дала теория Бутлерова.1861 создаёт теорию хим. Строения органических веществ. С- всегда 4х валентен.

  1. Глюкоза. Строение, свойства, биологическое значение, применение.

Н Н Н ОН Н С6Н12О6 Mr.=180г/м

/ / / / / Свойства – без цветное кристаллическое вещ. Сладкое, хор. раствор. в воде. Хим свой характерны для

Н—С—С—С—С—С—С=О спиртов и альдегидов реагирует с карбоновыми кисло. С образованием сложных эфиров , с гидрооксидом

/ / \ \ \ меди, с оксидом серебра. Является ценным питательным продуктом. В организме подвергается

>Медицине как укрепляющее. В кандитерстве. Для брожения капуста-пиво.

-3)Определить с помощью характерной реакции органическое вещество.

Билет №3

  1. Виды химической связи.

А) Ионная — образуется при взаимодействии атомов, которые сильно различаются по электроотрицательностям. Например, Li. K. Ca.Cr. Ba.-образуют ионную связь с типичными неметаллами в основном с галогенами. Между ионами существуют сильные электростатические силы притяжения. Поэтому Ионы обладают высокой t плавления.

Б) ковалентная неполярная – при соединении атомов с одинаковыми электро отрицательностями образуются молекулы H3. F2. CL2. O2. N2.

В) Ковалентною полярную – при взаимодействии атомов с электро отрицательностями, отличающимися незначительно, происходит смешение общей связующей электронной пары к более электроотрицательному атому.

Г) Металлическая- осуществляется относительно свободными электронами между ионами металлов в кристаллической решетке.

Д) Водородная – между атомами водорода одной молекулы и сильно отрицательным элементом O.N. F.другой молекулы.

-2)Генетическая связь органических соединений.

В органической химии также следует различать более общие ] понятие — «генетическая связь» и более частное понятие — «генетический ряд». Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в орган и ческой химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекул. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

3) Вычисление выхода продукта реакции в % от теоретически возможного.

Билет №4

  1. Генетическая связь неорганических соединений.

Генетическая связь это значит, родственная связь, имея представителей одного класса неорганических соединений через ряд превращений можно получить вещества других классов. Генетическим называют ряд веществ — представите лей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращения­ми и отражающих общность происхождения этих веществ или их генезис .Генетическая связь — понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый, приведенный в тексте параграфа ряд веществ. Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:I. Генетический ряд металла. Наиболее богат ряд металла, у которого проявляются разные степени окисления. 11Генетический ряд неметалла. Аналогично ряду металлов более богат связями ряд неметалла с разными степенями окисления. III. Генетический ряд металла, которому соответствуют амфотерные оксид и гидрооксид, очень богат связями, так как они проявляют в зависимости от условий то свойства кислоты. то свойства основания. Например, рассмотрим генетический ряд цинка:

2)Этилен — представитель непредельных углеводородов. Строение, свойства, применение.

С2Н4 Н Н углеводородов с общей формулой СnH3n в молекулах которых между атомами углерода имеется одна двойная

Н — С = С — Н связь, называются углеводородами ряда этилена, или алкенами. Физические свойства. Этилен — бесцветный газ, почти без Запаха, немного легче воздуха, плохо растворим в воде. Про­пилен и бутены (бутилены) при нормальных условиях также газообразные, от пентена C5H20 до октадецена C18H46 вклю­чительно углеводороды находятся в жидком состоянии, а на­чиная с нонадецена C19H48— в твердом. Химические свойства. Химические свойства этилена и его гомологов в основном определяются наличием в их моле­кулах двойной связи. Для них характерны реакции при­соединения, окисления и полимеризации.

1. Реакции присоединения. 1. Этилен и его го­мологи взаимодействуют с галогенами. Так, например, они обесцвечивают бромную воду:

Н2С=СН2 + Вг2 — СН2Вг—СН2Вг

1,2-дибромэта н

2. Аналогично происходит присоединение водорода (гид­рирование этилена и его гомологов) :Н2С=СН2 + Н2— КАТ— НзС-СНз

этилен этан

3. В присутствии серной или ортофосфорной кислоты и других катализаторов этилен присоединяет воду (реакция гидратации) :

Н2С=СН2 + НОН- СНз— СН2— ОН ——Этой реакцией пользуются для получения этилового спирта в промышленности.

Этилен этиловый спирт

4. Этилен и его гомологи присоединяют также галогена –водороды : Н2С=СН2+HCL — — СНз—СН2С1 этил хлорид

Н2С=СН2 + НВг ——СНз—СН2Вг этил бромид

3) Определить с помощью характерных реакций одно из неорганических веществ.

Билет №5

1)Классификация химических реакций.

Соединения – образуется одно новое из двух других. Разложения – из одного вещества образуется несколько новых. Замещения – атомы простого вещества замещяет атомы одного из элементов молекуле сложного. Обмена – молекулы обмениваются своими частями. Экзотермические – с выделением тепла. эндотермические с поглощением тепла. Окислитель но восстановительные с изменением степени окисления.

2)Нефть. Состав. Способы переработки. Применение продуктов переработки.

СВОЙСТВА — маслянистая жидкость от светло бурого до черного с характерным запахом . легче воды практически не растворяется в ней. Нет определенной температуры кипения. Находится в земной породе. Состав нефти. В зависимости от месторождения нефть имеет различный качественный и количественный состав. Так, например, Бакинская нефть богата циклопарафинами и сравнительно бедна предельными углеводородами. Значи­тельно больше предельных углеводородов в грозненской и ферганской нефти. Пермская нефть содержит аромати­ческие углеводороды. Перегонка нефти осуществляется в установке, которая * состоит из трубчатой печи 1, ректификационной колонны 2 и холодильника 3). В печи находится змеевик (трубо­провод). По трубопроводу непрерывно подается нефть, где она нагревается до 320— 350 °С и в виде смеси жидкости и паров поступает в ректификационную колонну (сталь­ной цилиндрический аппарат высотой около 40 м) Внутри она имеет горизонтальные перегородки с отверстиями, так называемые тарелки .Пары нефти подаются в колонну и через отверстия поднимаются вверх, при этом они постепенно охлаждаются и сжижаются.

-3) Вычисление объема полученного газа по известной массе исходного раствора с определенной массовой долей растворенного вещества.

Билет №6

1)Дисперсные системы. Их роль в природе.

При растворении в воде вещества дробятся, диспергируют. Такие системы получили названия Дисперсные системы они состоят из дисперсной среды и диспергированого вещества. Грубо дисперсные более 100нм.1- суспензии -смесь глины с водой(мутные частицы видны не вооруженным глазом , осаждаются легко задерживаются обычным фильтром ). 2- эмульсии смесь масла или бензина с водой(———-) . тонко дисперсные системы 1- коллоидные раствор яичного белка в воде(видны под микроскопом осаждаются трудом задерживаются ультрафильтрами). Истинные растворы сахара и соли (не осаждаются не задерживаются фильтром).

2)Уксусная кислота.

Строение, свойства, применение.

CН3-С=О Физические свойства. Низшие карбоновые кислоты — жидкости с острым запахом, хорошо растворимые в воде. С повышением, — ОН относительной молекулярной массы раство­римость кислот в воде уменьшается, а температура кипе­ния повышается. Высшие кислоты, начиная с иоларгоновой (нона новой) СН3—(СН2)?—СООН,— твер­дые вещества, без запаха, нерастворимые в воде. Применение. Муравьиная кислота применяется в про­мышленности в качестве сильного восстановителя. Ее 1,25%-ный раствор в спирте (муравьиный спирт) приме­няется в медицине. Сложные эфиры муравьиной кислоты используются в качестве растворителей и душистых ве­ществ. Наибольшее значение имеет уксусная кислота .Она необходима для синтеза красителей (например, ин­диго), медикаментов (например, аспирина), сложных эф ров, уксусного ангидрида, монохлоруксусной кислоты и т. д. Большие ее количества расходуются для производства ацетатного волокна, негорючей кинопленки, орга­нического стекла, пропускающего ультрафиолетовые лучи Широко используются ее соли — ацетаты. Ацетат свин­ца (II) применяется для изготовления свинцовых белил и свинцовой примочки в медицине, ацетаты железа (III)

3) Определить с помощью характерных реакций одно из органических веществ.

Периодическая система химических элементов и строение атома

⇐ Предыдущая123Следующая ⇒

Таблица Периодической системы химических элементов графически отображает Периодический закон. Каждое число в ней характеризует какую-либо особенность в строении атомов:

1. Порядковый (атомный) номер химического элемента указывает на заряд его атомного ядра, то есть на число протонов, содержащихся в нем, а так как атом электронейтрален, то и на число электронов, находящихся вокруг атомного ядра;

2. Номер периода соответствует числу энергетических уровней (электронных слоев) в атомах элементов данного периода;

3. Номер группы соответствует числу электронов на внешнем уровне для элементов главных подгрупп и максимальному числу валентных электронов для побочных подгрупп.

В свете строения атома можно объяснить причины изменения свойств химических элементов и образованных ими веществ. В периоде с увеличением зарядов атомных ядер элементов (слева направо) металлические свойства ослабевают, а неметаллические усиливаются. В группах (главная подгруппа) с увеличением зарядов атомных ядер элементов (сверху вниз) металлические свойства усиливаются, а неметаллические ослабевают.

Природа каждого химического элемента, то есть определенные, присущие только ему свойства атомов, простых веществ, соединений, зависит прежде всего от заряда ядра его атомов. Заряд обусловливает и строение электронной оболочки атома. Но величины зарядов ядер атомов химических элементов в Периодической системе Д.И. Менделеева изменяются монотонно, поэтому прямой причиной периодического изменения свойств элементов это явление быть не может. Оказывается, причина периодичности – изменение строения внешних электронных слоев атома.

Таким образом, из вышесказанного можно сделать вывод: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от строения внешних электронных слоев атомов.

Роль открытия

Д.И. Менделеев писал: «До периодического закона элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая закономерность первая дала возможность видеть не открытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

С открытием Периодического закона химия перестала быть описательной наукой – она получила инструмент научного предвидения. Этот закон и его графическое отображение – таблица периодической системы химических элементов Д.И. Менделеева – выполнили все три важнейшие функции теоретического знания: обобщающую, объясняющую и прогностическую.

На их основе ученые:

1. Систематизировали и обобщили все сведения о химических элементах и образуемых ими веществах;

б) Дали обоснование различным видам периодической зависимости, существующим в мире химических элементов, объяснив их на основе строения атомов элементов.

в) Предсказали, описали свойства еще не открытых химических элементов и образованных ими веществ, а также указали пути их открытия.

На основе закона и таблицы Д.И. Менделеева были предсказаны и открыты благородные газы. И сейчас этот закон служит путеводной звездой для открытия или искусственного создания новых химических элементов.

Открытие Периодического закона и создание таблицы Периодической системы химических элементов Д.И. Менделеевым стимулировало поиск причин взаимосвязи элементов, способствовало выявлению сложной структуры атома и развитию учения о строении атома. Это учение, в свою очередь, позволило вскрыть физический смысл Периодического закона и объяснить расположение элементов в Периодической системе. Оно привело к открытию атомной энергии и использованию ее для нужд человечества.

Таким образом, Периодический закон и система открыли новую эру в химии и физике, явились исходным пунктом для новых изысканий и открытий. Также периодический закон сыграл большое значение и как основной закон природы в развитии материалистической философии.

Добавить комментарий

Закрыть меню