Передача данных по электросети

Технологии связи по электросети (Power Line Communication, PLC) активно развиваются и становятся все более востребованными во всем мире. И Россия — не исключение. Их используют при автоматизации технологических процессов, организации систем видеонаблюдения и даже для управления «умным» домом.

Исследования в области передачи данных с использованием электросети ведутся достаточно давно. Когда-то применение PLC тормозила низкая скорость передачи данных и недостаточная защищенность от помех. Развитие микроэлектроники и создание современных, а главное более производительных процессоров (чипсетов), дали возможность использовать сложные способы модуляции для обработки сигнала, что позволило значительно продвинуться вперед в реализации PLC. Однако о реальных возможностях технологии связи по электросети до сих пор знают лишь немногие специалисты.

Технология PLC использует электрические сети для высокоскоростной передачи данных и основана на тех же принципах, что и ADSL, которая применяется для передачи данных в телефонной сети. Принцип работы следующий: сигнал высокой частоты (от 1 до 30 МГц) накладывается на обычный электрический сигнал (50 Гц) с применением различных модуляций, а сама передача сигнала происходит через электрические провода.

Оборудование может принять и обработать такой сигнал на значительном расстоянии — до 200 м. Трансфер данных может осуществляться как по широкополосным (BPL), так и по узкополосным (NPL) линиям электропередачи. Только в первом случае передача данных будет идти со скоростью до 1000 Мбит/с, а во втором значительно медленнее — только до 1 Мбит/с.

На пределе скорости?

Сегодня пользователям доступны технологии PLC третьего поколения. Если в 2005 году, с появлением стандарта HomePlug AV, скорость передачи данных выросла с 14 до 200 Мбит/с (этого достаточно для предоставления так называемых «Triple Play» услуг, когда пользователям одновременно предоставляются высокоскоростной доступ в интернет, кабельное телевидение и телефонная связь), то последнее поколение PLC использует уже двойной физический уровень передачи данных — Dual Physical Layer. Вместе с FFT OFDM применяется Wavelet OFDM-модуляция, то есть ортогональное частотно-разделенное мультиплексирование, но с применением вейвлетов. Это позволяет в несколько раз поднять скорость передачи данных— до 1000 Мбит/c.

Однако важно понимать, что речь идет о физической скорости. Реальная скорость передачи данных зависит от многих факторов и может быть в разы меньше. Качество электропроводки в доме, скрутки в линии, ее неоднородность (например, в алюминиевой проводке затухание сигнала сильнее, чем в медной, что сокращает дальность связи примерно в два раза) — все это деструктивно влияет и на физическую скорость и качество передачи данных. Также PLC — все адаптеры должны находится на одной фазе в электрической сети, в электросети между адаптерами не должно быть гальванических развязок (трансформаторов , ИБП), пилоты, фильтры и УЗО снижают скорость передачи данных. Исключение — QPLA-200 v.2 и QPLA-200 v.2P, т.к. особенностью данных адаптеров является уникальная технология Clear Path. Используя технологию Clear Path, можно создать сеть даже тогда, когда PLC устройства подключены к разным фазам, т.е. эта технология динамически выбирает менее зашумленные каналы для передачи информации, тем самым увеличивая скорость передачи данных. В одной PLC –сети могут находиться до 8 устройств.

Говоря о PLC-технологии, за скорость принято брать полудуплексную или однонаправленную скорость. То есть, если указанная скорость равна 200 Мбит/c, то реальная будет составлять 70-80 Мбит/c. В реальной жизни физическую скорость с большой уверенностью можно делить пополам, и пропорционально уменьшать на 10% при подключении каждого мощного домашнего устройства -утюг, чайник, кондиционер, холодильник и пр.

В обычных бытовых условиях по проводам с помощью PLC сигнал может передаваться на расстояние около 200 м. Например, дом площадью 200 кв. м можно покрыть без проблем. Качество связи при этом будет зависеть от качества электрической сети. Преградой для прохождения сигнала может стать обыкновенный сетевой фильтр, который часто бывает встроен в удлинитель, источник бесперебойного питания или трансформатор. Следует помнить и то, что распространение сети по электропроводке ограничивается электрическим щитком с предохранителями. Так что создать сеть, например, с соседом по квартире не получится. Для этого лучше подойдет Wi-Fi.

Плюсы и минусы PLC

PLC-технологии, безусловно, заслуживают внимания, однако наряду с плюсами, у них есть и очевидные недостатки. Но обо всем по порядку. PLC помогает наладить качественное предоставление услуг Triple Play, не требует прокладки проводов для передачи данных, а, значит, и дополнительных затрат. Быстрый монтаж и возможность подключения к существующим сетям — тоже очко в пользу PLC. Кроме того, PLC-сеть можно легко разобрать и сконфигурировать, например, при переезде офиса в другое здание. Такая сеть легко масштабируется — можно организовать практически любую ее топологию с минимальными затратами (в зависимости от количества дополнительных PLC-адаптеров). В сложных условиях (железобетонные конструкции, высокий уровень электромагнитных помех) в отличие от беспроводных технологий Wi-Fi, WiMAX и LTE PLC-сеть будет работать без сбоев. При этом за счет применения самых современных алгоритмов шифрования обеспечена и безопасная передача данных по сети.

Недостатков у PLC меньше, но знать о них стоит. Во-первых, пропускная способность сети по электропроводке делится между всеми ее участниками. Например, если в одной PLC-сети две пары адаптеров активно обмениваются информацией, то скорость обмена для каждой пары будет составлять примерно по 50% от общей пропускной способности. Во-вторых, на стабильность и скорость работы PLC влияет качество выполнения электропроводки (например, медного и алюминиевого проводника). И в-третьих, PLC не работает через сетевые фильтры и источники бесперебойного питания, не оборудованные специальными розетками PLC Ready.

Применение PLC на практике

Сегодня PLC находит широкое практическое применение. В связи с тем, что технология использует существующую электросеть, она может быть использована в автоматизации технологических процессов для связки блоков автоматизации по электропроводам (например, городские электросчетчики).

Нередко PLC применяют при создании систем видеонаблюдения или локальной сети в небольших офисах (SOHO), где основными требованиями к сети являются простота реализации, мобильность устройств и легкая масштабируемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PLC-адаптеров. Часто в уже существующую офисную сеть необходимо включить удаленный компьютер или сетевой принтер, расположенный в другой комнате или даже в другом конце здания — c помощью PLC-адаптеров эту проблему можно решить за несколько минут.

Кроме того, PLC-технология открывает новые возможности для реализации идеи «умного» дома, в котором вся бытовая электроника должна быть завязана в единую информационную сеть с возможностью централизованного управления.

Технология PLC

Технология PLC (Power Line Communication) обеспечивает передачу данных по силовым линиям электропитания. Существует несколько разных технологий PLC: для передачи данных по высоковольтным ЛЭП, для передачи данных телеметрии и широкополосной передачи данных по низковольтным сетям.

Для построения систем АСКУЭ используются технологии PLC, обеспечивающие узкополосную передачу данных в диапазоне частот CENELEC A (35-91 кГц, Россия и Европа), CENELEC B (98-122 кГц, некоторые страны Европы), FCC (155-487 кГц, США).
На настоящий момент на рынке существуют стандартизованные технологии передачи данных PLC PRIME, G3PLC, обеспечивающие сравнимые характеристики, а также ряд проприетарных технологий, часть из которых не соответствует нормам излучения по частоте или мощности, на что следует обращать особое внимание при выборе PLC-технологии.

Варианты реализаций технологии PLC от компании Инкотекс:
PLC II: Проприетарная, проверенная годами технология PLC, работающая в стандартном диапазоне CENELEC A. Технология представляет собой mesh-сеть с автоматическим перестроением маршрутов и автоматической ретрансляцией для увеличения дальности связи от концентратора до счетчиков электроэнергии. Технология обладает относительно небольшой скоростью передачи данных, но высокой надежностью, подтвержденной несколькими сотнями тысяч приборов учета, включенными в АСКУЭ на базе PLC II. Технология оптимальна для развертывания локальных систем, не предъявляющих повышенных требований к объемам собираемых данных и достаточна для построения АСКУЭ с функциями сбора суточных показаний и журналов событий и функциями управления нагрузкой.

PRIME/G3PLC: Технологии являются международными стандартами, поддерживаются разными производителями систем и приборов учета. На данный момент технологии не имеют существенных различий в применении, при этом технологии не совместимы друг с другом. Следует обратить внимание, что кроме совместимости технологий PLC, для обеспечения взаимозаменяемости счетчиков разных производителей должна быть обеспечена совместимость и на уровне протоколов обмена. Счетчики торговой марки «Меркурий», использующие технологию PRIME и G3PLC, поддерживают стандартный протокол обмена СПОДЭС на основе DLMS\COSEM.

Типовая дальность связи при использовании PLC составляет порядка 100м, максимальная — 400 метров.

Дальность связи зависит от качества электрической сети (наличие скруток, множественных отпаек и т.п.) и наличия помех. Дальность связи практически не зависит от используемой технологии связи. Меньшую дальность обеспечивают старые системы, большую — только системы, работающих в нестандартном (запрещенном) частотном диапазоне или с превышением разрешенной мощности.

Преимущества технологий PLC

  • крайне низкие затраты на развертывание и эксплуатацию. Фактически, если есть линия электропитания, значит есть и канал связи со счетчиком.

Особенности PLC

  • чувствительность к помехам, генерируемым некачественным оборудованием потребителей (некачественные блоки питания, несоответствующие нормам электромагнитной совместимости, частотные приводы без использования обязательных для них фильтров радиопомех и т.п.)

Приборы, использующие технологию PLC:

Реально в технологии Powerline используются 84 поднесущие частоты в диапазоне 4-21 МГц (рис.6).

Теоретическая скорость передачи данных при использовании параллельных потоков с одновременным фазовым модулированием сигналов составляет более 100 Мб/с.
Адаптация к физической среде, устранение ошибок и разрешение конфликтов.
При передаче сигналов по бытовой сети электропитания могут возникать большие затухания в передающей функции на определенных частотах, что приведет к потере данных (рис. 7).]

В технологии Powerline предусмотрен специальный метод решения этой проблемы — динамическое выключение и включение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания.

В случае обнаружения данного факта использование этих частот на время прекращается до восстановления нормального значения затухания (рис.8).

Данный метод делает технологию Powerline максимально гибкой при использовании в различных условиях. Например, в разных странах существуют различные регулирующие правила, согласно которых часть диапазона частот не может быть использована. При этом, в случае Powerline, в этом диапазоне просто не будут передаваться данные. Еще одним примером является случай, когда некое приложение уже использует часть диапазона. Аналогично первому случаю, в этом также выключается передача данных на определенных частотах, и два приложения могут спокойно сосуществовать в одной физической среде.
Другой серьезной проблемой при передаче данных по бытовой электросети являются импульсные помехи (до 1 микросекунды), источниками которых могут быть галогеновые лампы (ри.9), включение и выключение различных электроприборов и т.д.

При использовании предыдущего метода система может не успеть адаптироваться к быстро изменившимся условиям, в результате часть битов будет разрушена и утеряна. Для решения этой проблемы используется двухступенчатое (каскадное) помехоустойчивое кодирование битовых потоков перед тем, как они будут промодулированы и поступят в канал передачи данных. Суть помехоустойчивого кодирования состоит в добавлении в исходный информационный поток по определенным алгоритмам избыточных («защитных») битов, которые используются декодером на приемном конце для обнаружения и исправления ошибок. Каскадирование блочного кода Рида-Соломона и простого сверточного кода, декодируемого по алгоритму Витерби, позволяет исправлять не только одиночные ошибки, но и пакеты ошибок, обеспечивая тем самым практически 100% гарантию целостности передаваемых данных. Кроме того, помехоустойчивое кодирование является и способом технического закрытия, обеспечивающего относительную безопасность передаваемой информации в общей среде передачи.
Ещё одним проблемным моментом является то, что сеть бытового электропитания служит общей средой передачи данных, то есть в один момент времени передачу могут осуществлять сразу несколько устройств. В такой ситуации для разрешения конфликтов столкновения трафика необходим регулирующий механизм — протокол доступа к среде. В качестве такого протокола был выбран хорошо известный Ethernet, который в технологии Powerline был расширен путем добавления дополнительных полей приоритезации. Такая модификация вызвана необходимостью гарантированной полосы пропускания для передачи голоса и видео через IP, когда величина задержки является критичным параметром. Пакеты, содержащие голос или видео в этом случае помечаются как «timing critical», т. е. имеют самый высокий приоритет при обработке и доступе к среде передачи.

Практическая реализация и использование PowerLine
Итак, мы рассмотрели основные принципы технологии Powerline. К сожалению, доступ к полной версии стандарта HomePlug 1.0 specification ограничен (только члены HomePlug Alliance), и за кадром остались такие интересные вопросы как требования к электропроводке, дальности передачи и структура построения. Приблизительно оценить отдельные параметры можно на примере некоторых производителей. Так фирма Phonex предлагает устройство Phonex Broadband QX-201 NeverWire 14 (рис.10) с максимальной скоростью до 14 Мб/с.

Расстояние между отдельными точками небольшое, несколько десятков метров. Как видно из рисунка, объединение пользователей в доме можно осуществлять через сеть электропитания, а в качестве доступа к магистральной сети использовать один или несколько модемов (кабельных или DSL).

На данный момент в России предлагается большой выбор оборудования для создания локальных сетей по технологии PLC . Например, производства компании PLANET ‘ s powerline communication , которое работает с PLC стандартом HomePlug1.0 specification, в котором определена скорость передачи данных до 14 Мб/сек. Продукт носит название PL -401 E и представляет собой мост с одним PLC -портом, и свитч с четырьмя LAN -портами. Его стоимость в среднем составляет $82.

Или PLC адаптер, позволяющий соединять от 2 до 16 компьютеров в единую локальную сеть через электропроводку 220 Вольт.

Дальность передачи сигнала — до 200 м. (по электропроводке);

Скорость передачи данных — до 14 Mb/сек.;

Защита данных DES 56 bit;

Переключатель PC/HUB;

Не требует установки дополнительного программного обеспечения.

Проблемы развития технологии PLC .

Однако, какими бы оптимистичными ни были результаты работы экспериментальных PLC-сетей за рубежом, в нашей стране эта технология может столкнуться с рядом трудностей. Наша электрическая проводка сделана в основном из алюминия, а не из меди, которая используется в большинстве стран мира. Алюминиевые провода обладают худшей электропроводностью, что приводит к более быстрому затуханию сигнала. Другая проблема заключается в том, что у нас до сих пор не решены основные вопросы нормативно-правового регулирования использования таких технологий. Впрочем, последняя проблема актуальна и для Запада. Основным фактором, сдерживающим быстрое развитие высокоскоростных систем PLC, является отсутствие стандартов на широкополосные PLC-системы, и, как следствие, большой риск несовместимости с другими службами, использующими те же или близкие диапазоны частот. В 2001 году международный консорциум HomePlug Powerline Alliance принял отраслевой стандарт для построения домашних сетей через линии бытовой электропроводки — спецификацию HomePlug 1.0. Но этот стандарт регламентирует построение «домашних» сетей, то есть сетей в пределах одной квартиры (коттеджа). Полноценный же стандарт для широкополосных PLC пока не разработан.

Спасибо за внимание!

Добавить комментарий

Закрыть меню