Определенный интеграл это определение

Приемы нахождения неопределенных интегралов

Способы нахождения неопределенных интегралов:

  1. Подведение под знак дифференциала: .
  2. Интегрирование по частям: ∫.
  3. Простейшие преобразования подынтегрального выражения (пример): .
  4. Интегрирование рациональных дробей (пример): .
  5. Интегрирование простейших иррациональностей: .
  6. Интегрирование выражений, содержащих тригонометрические функции: ∫.

Приближенное вычисление определенного интеграла по формуле прямоугольников.
см. также Задача интегрирования в конечном виде, Несобственные интегралы

Пример 1. Вычислить ∫.
Решение.
Возводить двучлен в 17-ю степень нецелесообразно. Исходя из табличного интеграла , получаем
= .
Пример 2. Вычислить .
Решение.
Аналогично предыдущему,
=

Пример 3. .
Решение. Поскольку
, то .

Пример 4. Вычислить
Решение. Так как
, то .

Пример 5. Вычислить .
Решение.
Применим подстановку . Отсюда , , .
Подставив в интеграл, получим
= .

Пример 6. Вычислить .
Решение.
Положим , ; тогда , . Применим формулу интегрирования по частям:
.
Мы добились понижения степени на единицу. Чтобы найти , применим еще раз интегрирование по частям. Полагаем , ; тогда , и
.

Пример 7. Вычислить .
Решение. Выделяя целую часть, получим: .
Учитывая, что , для второго слагаемого получаем разложение
Приводя к общему знаменателю, получим равенство числителей:
.
Приравнивая коэффициенты при одинаковых степенях x, получаем
x3: 0=A+C
x2: -5=B+D
x: 0=4A+C
x0: -4=4B+D

Отсюда находим , , .
Подставляя найденные коэффициенты в разложение и интегрируя его, получаем:
.

Пример 8. Вычислить .
Решение. Так как
,
то подынтегральное выражение есть рациональная функция от и ; поэтому введем подстановку:
; ,
откуда
; ; ;.
Следовательно,
.

Пример 9. Вычислить .
Решение.
Подынтегральная функция рационально зависит от и ; применим подстановку , тогда
, , и
=
Возвращаясь к старой переменной, получим
= .

Пример 10. Вычислить .
Решение.
Произведем замену . Тогда , ;
таким образом,
.
Следует обратить внимание, что при замене переменной в определенном интеграле пределы интегрирования в общем случае изменяются.

Пример 11.Вычислить несобственный интеграл или доказать его расходимость.
Решение. Подынтегральная функция не ограничена в окрестности точки =1. На любом же отрезке она интегрируема, так как является непрерывной функцией. Поэтому
.
Пример 12. Вычислить несобственный интеграл или доказать его расходимость.
Решение.
Подынтегральная функция непрерывна и интегрируема на . По определению
= =
Интеграл сходится.

Пример 13. Найти площадь фигуры, ограниченной параболой и прямой .
Решение.
Найдем абсциссы точек пересечения параболы и прямой . Решая уравнение , находим , . Так как фигура ограничена сверху прямой, а снизу параболой, по известной формуле находим
.

Интеграл, методы интегрирования

Формула Ньютона-Лейбница.

Пусть функция y = f(x) непрерывна на отрезке и F(x) — одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница: .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления.

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке , то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, — это одна из первообразных функции y = f(x) на отрезке . Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a), используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b): , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Для начала отметим, что подынтегральная функция непрерывна на отрезке , следовательно, интегрируема на нем. (Об интегрируемых функциях мы говорили в разделе функции, для которых существует определенный интеграл).

Из таблицы неопределенных интегралов видно, что для функции множество первообразных для всех действительных значений аргумента (следовательно, и для ) записывается как . Возьмем первообразную при C = 0: .

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла: .

По формуле Ньютона-Лейбница вычислите определенный интеграл .

Подынтегральная функция непрерывна на отрезке , поэтому, интегрируема на нем.

Найдем неопределенный интеграл методом подведения под знак дифференциала: . Так мы получили множество всех первообразных функции для всех действительных x, следовательно, и для .

Возьмем первообразную при С=0 и применим формулу Ньютона-Лейбница:

Вычислить определенные интегралы .

На отрезке подынтегральная функция непрерывна, следовательно, интегрируема.

Найдем множество первообразных функции : .

Возьмем первообразную и по формуле Ньютона-Лейбница вычислим требуемый определенный интеграл:

Переходим ко второму определенному интегралу.

На отрезке подынтегральная функция не ограничена, так как , то есть, не выполняется необходимое условие интегрируемости функции на отрезке. Более того, не является первообразной функции на отрезке , поскольку точка 0, принадлежащая отрезку, не входит в область определения функции. Следовательно, не существует определенный интеграл Римана и Ньютона-Лейбница для функции на отрезке .

Итак, перед применением формулы Ньютона-Лейбница обязательно нужно убедиться, что указанный определенный интеграл существует.

К началу страницы

Замена переменной в определенном интеграле.


Пусть функция y = f(x) определена и непрерывна на отрезке . Множество является областью значений некоторой функции x = g(z), которая определена на интервале и имеет на нем непрерывную производную, причем и , тогда .

Этой формулой удобно пользоваться в тех случаях, когда нам требуется вычислить интеграл , причем неопределенный интеграл мы бы искали методом подстановки.

Разберем на примере для ясности.

Вычислить значение определенного интеграла .

Подынтегральная функция непрерывна на отрезке интегрирования, следовательно, определенный интеграл существует.

Обозначим . При x=9 имеем , а при x=18 имеем , то есть, . Подставляем полученные результаты в формулу :

Из таблицы неопределенных интегралов видно, что одной из первообразных функции является функция , поэтому, по формуле Ньютона-Лейбница имеем

Можно было обойтись и без формулы .

Если методом замены переменной взять неопределенный интеграл , то мы придем к результату .

Таким образом, по формуле Ньютона-Лейбница вычисляем определенный интеграл:

Как видите, результаты совпадают.

К началу страницы

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок на n частей точками a= x0 < x1 <…< xn = b. Из каждого интервала (xi-1, xi) возьмем произвольную точку ξi и составим сумму f(ξi) Δxi где
Δ xi=xi — xi-1 . Сумма вида f(ξi)Δ xi называется интегральной суммой, а ее предел при λ = maxΔxi→ 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

f(ξi)Δxi (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла.

Для определенного интеграла справедливы следующие свойства:

1)

2)

3) —

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении.

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница, cвязывающая определенный интеграл с неопределенным:

F(b) — F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox.

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31. Найти ∫ tgxdx.

Решение.∫ tgxdx = ∫sinx/cosxdx = — ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = — ln|t| + C = -ln|cosx|+C.

Пример 3.32. Найти ∫dx/sinx

Решение.

Пример3.33. Найти .

Решение. = .

Пример3.34. Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x2+1), v=x, откуда ∫arctgxdx = xarctgx — ∫ xdx/(x2+1) = xarctgx + 1/2 ln(x2+1) +C; так как
∫xdx/(x2+1) = 1/2 ∫d(x2+1)/(x2+1) = 1/2 ln(x2+1) +C.

Пример3.35. Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx — ∫x 1/x dx =
= xlnx — ∫dx + C= xlnx — x + C.

Пример3.36. Вычислить ∫exsinxdx.

Решение. Обозначим u = ex, dv = sinxdx, тогда du = exdx, v =∫sinxdx= — cosx → ∫ exsinxdx = — excosx + ∫ excosxdx. Интеграл ∫excosxdx также интегрируем по частям: u = ex, dv = cosxdx, du=exdx, v=sinx. Имеем:
∫ excosxdx = exsinx — ∫ exsinxdx. Получили соотношение ∫exsinxdx = — excosx + exsinx — ∫ exsinxdx, откуда 2∫exsinx dx = — excosx + exsinx + С.

Пример3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение.Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx).

Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример3.38. Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Пример3.39. Вычислить интеграл J = .

Решение. Имеем: . Поэтому =
=
=.

Пример3.40. Можно ли применить формулу Ньютона-Лейбница к интегралу ?

Решение. Нет, нельзя. Если формально вычислять этот интеграл по формуле Ньютона-Лейбница, то получим неверный результат. Действительно, = .

Но подынтегральная функция f(x) = > 0 и, следовательно, интеграл не может равняться отрицательному числу. Суть дела заключается в том, что подынтегральная функция f(x) = имеет бесконечный разрыв в точке x = 4, принадлежащей промежутку интегрирования. Следовательно, здесь формула Ньютона-Лейбница неприменима.

Пример3.41. Вычислить интеграл .

Решение. Подынтегральная функция определена и непрерывна при всех значениях х и, следовательно, имеет первообразную F(x)= .

По определению имеем: = .

По формуле Ньютона-Лейбница,

= F(b) — F(0) = + = ;

= = .

Определенный интеграл. Примеры решений

Для того чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще совсем не закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом? Прибавились пределы интегрирования.

Нижний предел интегрирования стандартно обозначается буквой .
Верхний предел интегрирования стандартно обозначается буквой .
Отрезок называется отрезком интегрирования.

Прежде чем мы перейдем к практическим примерам, небольшое «факью» по определенному интегралу.

Что такое определенный интеграл? Я бы мог вам рассказать про диаметр разбиения отрезка, предел интегральных сумм и т.д., но урок носит практический характер. Поэтому я скажу, что определенный интеграл – это ЧИСЛО. Да-да, самое что ни на есть обычное число.

Есть ли у определенного интеграла геометрический смысл? Есть. И очень хороший. Самая популярная задача – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число.

Как решить определенный интеграл?С помощью знакомой со школы формулы Ньютона-Лейбница:

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию (неопределенный интеграл). Обратите внимание, что константа в определенном интеграле никогда не добавляется. Обозначение является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись ? Подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: .

3) Подставляем значение нижнего предела в первообразную функцию: .

4) Рассчитываем (без ошибок!) разность , то есть, находим число.

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда.

Например, интеграла не существует, поскольку отрезок интегрирования не входит в область определения подынтегральной функции (значения под квадратным корнем не могут быть отрицательными). А вот менее очевидный пример: . Такого интеграла тоже не существует, так как в точках , отрезка не существует тангенса. Кстати, кто еще не прочитал методический материал Графики и основные свойства элементарных функций – самое время сделать это сейчас. Будет здорово помогать на протяжении всего курса высшей математики.

Для того чтобы определенный интеграл вообще существовал, необходимо чтобы подынтегральная функция быланепрерывнойна отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. По студенческой молодости у меня неоднократно бывал казус, когда я подолгу мучался с нахождением трудной первообразной, а когда наконец-то ее находил, то ломал голову еще над одним вопросом: «что за ерунда получилась?». В упрощенном варианте ситуация выглядит примерно так:

???!!!

Нельзя подставлять отрицательные числа под корень!

Если для решения (в контрольной работе, на зачете, экзамене) Вам предложен несуществующий интеграл вроде

,

то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будетнесобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования?Может, и такая ситуация реально встречается на практике.

– интеграл преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:

Например, в определенном интеграле перед интегрированием целесообразно поменять пределы интегрирования на «привычный» порядок:

– в таком виде интегрировать значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

– это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям:

Пример 1

Вычислить определенный интеграл

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы . Появившуюся константу целесообразно отделить от и вынести за скобку. Делать это не обязательно, но желательно – зачем лишние вычисления?

(3) Используем формулу Ньютона-Лейбница

Сначала подставляем в верхний предел, затем – нижний предел.

Проводим дальнейшие вычисления и получаем окончательный ответ.

Пример 2

Вычислить определенный интеграл

Это пример для самостоятельно решения, решение и ответ в конце урока.

Немного усложняем задачу:

Пример 3

Вычислить определенный интеграл

Решение:

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница:
СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряю на третьем слагаемом:

– первое место в хит-параде ошибок по невнимательности, очень часто машинально пишут

(особенно, когда подстановка верхнего и нижнего предела проводится устно и не расписывается так подробно). Еще раз внимательно изучите вышерассмотренный пример.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, я сам привык решать подобные интегралы так:

Здесь я устно использовал правила линейности, устно проинтегрировал по таблице. У меня получилась всего одна скобка с отчёркиванием пределов:

(в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию, я сначала подставил сначала 4, затем –2, опять же выполнив все действия в уме.

Какие недостатки у короткого способа решения? Здесь всё не очень хорошо с точки зрения рациональности вычислений, но лично мне всё равно – обыкновенные дроби я считаю на калькуляторе.
Кроме того, существует повышенный риск допустить ошибку в вычислениях, таким образом, студенту-чайнику лучше использовать первый способ, при «моём» способе решения точно где-нибудь потеряется знак.

Несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная

находится в одной скобке.

Добавить комментарий

Закрыть меню