На магнитной подушке

Однако, многие специалисты отнеслись к затее японцев с великим скепсисом. Например, английский ученый Эрик Лейтон, который является основоположником использования принципа магнитной подушки на транспорте и вот уже многие годы занимается проблемами ее внедрения, утверждает: поскольку гироскоп — прибор чисто механический, свойства его симметричны; и вращайся он или нет, ничего особенного не произойдет.

Другие исследователи выражаются и того резче. Вплоть до того, что японские эксперименты не стоят и той бумаги, на которой они описаны. Между тем кое-какие намеки на объяснение можно отыскать. Скажем, подобный эффект, еще лет тридцать назад, обнаружил наш соотечественник, профессор А.Н.Козырев, который полагал: он вполне укладываестя в теорию относительности, как одно из ее следствий. Суть дела заключается в следующем. В каждой точке Вселенной вектор тяготения имеет определенное направление. Если момент вращения гироскопа совпадает с этим вектором, то суммарная сила тяготения увеличивается; в противном случае — уменьшается. (Однако остается непонятным, почему японцы заметили эффект лишь при определенном направлении вращения и ничего — в противоположном.)

Еще одно возможное объяснение связано с силой Кориолиса. Когда направление вращения гироскопа совпадает с вращением Земли, траектория падения контейнера будет несколько иной, чем если бы гироскоп был неподвижным или вращался в обратную сторону. Ну а поскольку дистанции разные, то и время их преодоления различно.

2. Поезда MAGLEV: основные характеристики и перспективы эксплуатации

Необходимость поездов на магнитной подушке (MAGLEV) обсуждается уже долгие годы, однако результаты попыток их реального применения оказались обескураживающими. Важнейший недостаток поездов MAGLEV заключается в особенности работы электромагнитов, которые и обеспечивают левитацию вагонов над полотном. Электромагниты, не охлаждаемые до состояния сверхпроводимости, потребляют гигантские объемы энергии. При использовании же сверхпроводников в полотне стоимость их охлаждения сведет на нет все экономические преимущества и возможность осуществления проекта.

Альтернатива предложена физиком Ричардом Постом из Lawrence Livermore National Laboratory, Калифорния. Ее суть заключается в использовании не электромагнитов, а постоянных магнитов. Ранее применяемые постоянные магниты были слишком слабы, что бы поднять поезд, и Пост применяет метод частичной акселерации, разработанный отставным физиком Клаусом Хальбахом из Lawrence Berkley National Laboratory. Хальбах предложил метод расположения постоянных магнитов таким образом, что бы сконцентрировать их суммарные поля в одном направлении. Inductrack – так Пост назвал эту систему – использует установки Хальбаха, вмонтированные в днище вагона. Полотно, само по себе, — это упорядоченная укладка витков изолированного медного кабеля.

Установка Хальбаха концентрирует магнитное поле в определенной точке, снижая ее в других. Будучи вмонтированной в днище вагона, она генерирует магнитное поле, которое индуцирует достаточные токи в обмотках полотна под движущимся вагоном, чтобы поднять вагон на несколько сантиметров и стабилизировать его . Когда поезд останавливается, эффект левитации исчезает, вагоны опускаются на дополнительные шасси.

Рис. 1 Установка Хальбаха

На рисунке представлено 20 метровое опытное полотно для испытания MAGLEV поездов типа Inductrack, которое содержит около 1000 прямоугольных индуктивных обмоток, каждая шириной 15 см. На переднем плане испытательная тележка и электрический контур. Алюминиевые рельсы вдоль полотна поддерживают тележку до момента достижения устойчивой левитации. Установки Хальбаха обеспечивают: под днищем – левитацию, по бокам – устойчивость.

Когда поезд достигает скорости 1-2 км/ч, магниты производят достаточные для левитации поезда токи в индуктивных обмотках.

Сила, движущая поезд, генерируется электромагнитами, установленными с интервалами вдоль пути. Поля электромагнитов пульсируют таким образом, что отталкивают от себя установки Хальбаха, смонтированные в поезде, и двигают его вперед. Согласно Посту, при правильном расположении установок Хальбаха, вагоны не потеряют равновесия ни при каких обстоятельствах, вплоть до землетрясения. В настоящее время, исходя из успехов демонстрационной работы Поста в масштабе 1/20, NASA подписало 3-х годичный контракт с его коллективом в Ливерморе для дальнейшего исследования данной концепции для более эффективного запуска спутников на орбиту. Предполагается, что эта система будет использоваться в качестве многоразового разгонного носителя, который разгонял бы ракету до скорости около 1 Маха, перед включением на ней основных двигателей.

Однако, несмотря на все сложности перспективы использования транспорта на магнитной подушке остаются весьма заманчивыми. Так, японское правительство готовится возобновить работу над принципиально новым видом наземного транспорта — поездами на магнитной подушке. По заверениям инженеров, вагоны «маглева» способны покрывать расстояние между двумя крупнейшими населенными центрами Японии — Токио и Осакой — всего за 1 час. Нынешним скоростным железнодорожным экспрессам для этого требуется времени в 2,5 раза больше.

Секрет скорости «маглева» состоит в том, что вагоны, подвешенные в воздух силой электромагнитного отталкивания, двигаются не по колее, а над ней. Это напрочь исключает потери, неизбежные при трении колес о рельсы. Многолетние испытания, проводившиеся в префектуре Яманаси на пробном участке длиной 18,4 км, подтвердили надежность и безопасность этой транспортной системы. Вагоны, двигавшиеся в автоматическом режиме, без пассажирской нагрузки развивали скорость в 550 км/час. Пока что рекорд скоростного передвижения по рельсам принадлежит французам, чей поезд TGV в 1990 году на испытаниях разогнался до 515 км/час.

Японцев также тревожат экономические проблемы, и в первую очередь вопрос рентабельности сверхскоростной линии «маглева». Ныне ежегодно между Токио и Осакой совершают путешествие около 24 млн. человек, 70% пассажиров пользуются при этом скоростной железнодорожной линией. Сможет ли «маглев» выдержать конкуренцию с «синкансэном»? Ведь, по подсчетам футурологов, революционное развитие сети компьютерной связи неминуемо приведет к снижению пассажиропотока между двумя крупнейшими центрами страны. На загруженности транспортных линий может сказаться и наметившееся падение численности активного населения страны

Транспортом на магнитной подушке занимаются не только японцы. В ФРГ в течение ряда лет шли собственные изыскания по этой тематике, и в прошлом году немцы отказались от идеи прокладки линии «маглева» между Берлином и Гамбургом из-за непомерной дороговизны проекта. А вот в Китае, наоборот, ныне серьезно рассматривается возможность включения строительства линии «маглева» между Пекином и Шанхаем в 10-летний план развития национального хозяйства.

Власти Шанхая намерены продлить единственную в мире коммерческую железнодорожную ветку на магнитной подушке с тем, чтобы скоростные поезда курсировали между двумя международными аэропортами города.

В настоящее время поезда, развивающие максимальную скорость 430 км/час, ходят от аэропорта Пудун до банковского центра. Теперь планируется соединить оба международных аэропорта на противоположных окраинах города, что позволит пассажирам добираться из одного в другой всего за 15 минут.

Шанхай выбран местом проведения Всемирной выставки в 2010 году. В борьбе за это право город потратил свыше $1 млрд на запуск поезда на магнитной подушке. Пока что проект имеет ограниченный успех: поезда ходят полупустыми, поскольку билеты на них дороги для китайцев, а остановки не соединены с какими-либо другими видами общественного транспорта. В этой стране уже построено 30 километров линий для поездов на магнитной подушке, а к Олимпиаде 2008 года планируется построить линию длиной 800 километров от Пекина от Шанхая. Время в пути составит 2 часа.

Российский проект открытия движения поездов на магнитной подушке из Москвы в Санкт-Петербург в ближайшее время не будет реализован, сообщил на пресс-конференции в Москве в конце февраля 2006 года руководитель Федерального агентства железнодорожного транспорта Михаил Акулов. С этим проектом могут быть проблемы, поскольку нет опыта эксплуатации поездов на магнитной подушке в условиях зимы, сказал Акулов, сообщив, что такой проект предложен группой российских разработчиков, которые взяли на вооружение опыт Китая. Вместе с тем Акулов отметил, что идея создания высокоскоростной магистрали Москва – Санкт-Петербург сегодня вновь актуальна. В частности, предложено совместить создание высокоскоростной магистрали с параллельным строительством автомобильного шоссе. Глава агентства добавил, что мощные бизнес-структуры из Азии готовы участвовать в этом проекте, не уточнив, о каких именно структурах идет речь.

3. Летающие экспрессы. Отечественные и зарубежные разработки

3.1 Разработки новых видов транспорта

Работы по созданию скоростных бесколесных поездов на магнитной подушке ведутся достаточно давно, в частности в Советском Союзе с 1974 года. Однако и в 2006 году проблема наиболее перспективного транспорта будущего остается открытой и является широким полем деятельности для современных ученых. В данном разделе речь идет о достоинствах и недостатках новейших разработок совершенно нового вида транспорта.

Рис. 2 Модель поезда на магнитной подушке

На рисунке 2 представлена модель поезда на магнитной подушке, где разработчики решили перевернуть всю механическую систему с ног на голову. Железнодорожная трасса представляет собой совокупность расставленных через определенные равные расстояния железобетонных опор со специальными проемами (окнами) для поездов. Рельсов нет. Почему? Дело в том, что модель перевернута, и в качестве рельса служит сам поезд, а в окнах опор установлены колеса с электромоторами, скоростью вращения которых дистанционно управляет машинист поезда. Таким образом, поезд как бы летит по воздуху. Расстояния между опорами подобраны таким образом, чтобы в каждый момент своего движения поезд находился, как минимум, в двух-трех из них, а один вагон имеет длину большую, чем один пролет. Это позволяет не только удерживать железнодорожный состав на весу, но и, вместе с тем, при отказе одного из колес в какой-либо опоре движение будет продолжаться.

Преимуществ использования именно этой модели достаточно. Во-первых, это экономия на материалах, во-вторых, вес поезда значительно уменьшается (не нужно ни двигателей, ни колес), в-третьих, такая модель чрезвычайно экологична, а в-четвертых, проложить такую трассу в условиях густонаселенного города либо местности с неровным ландшафтом гораздо проще, чем в стандартных видах транспорта.

Но нельзя не сказать и о недостатках. Например, если в рамках трассы одна из опор сильно отклонится, это приведет к катастрофе. Хотя, катастрофы возможны и в рамках обычных железных дорог. Другой вопрос, который ведет к сильному удорожанию технологии, это физические нагрузки на опоры. Например, хвост поезда, только выехавший из какого-либо конкретного проема, если говорить простыми словами, как бы «повисает» и оказывает большую нагрузку на следующую опору, при этом смещается и центр тяжести самого поезда, что влияет на все опоры, в целом. Примерно такая же ситуация возникает, когда голова поезда выезжает из проема и так же «повисает», пока не достигнет следующей опоры. Получаются своего рода качели. Как эту проблему намерены решать конструкторы (с помощью несущего крыла, огромной скорости, уменьшением расстояния между опорами…), пока неясно. Но решения есть. И третья проблема — повороты. Поскольку разработчики решили, что длина вагона больше, чем один пролет, стоит вопрос поворотов.

Невзирая на то, что с момента создания первых паровозов прошло уже более двухсот лет, человечество до сих пор не готово полностью отказаться от использования дизельного топлива, силы пара и электричества в качестве движущей мощи, способной перемещать тяжеловесные грузы и пассажиров.

Однако, как вы сами понимаете, все это время инженеры-изобретатели не пребывали в полном бездействии, и результатом работы их мысли стал выход в свет альтернативных способов транспортировки по железнодорожному полотну.

История возникновения поездов на электромагнитной подушке

Сама идея изготовления поезда, передвигающегося на магнитной подушке не так уж нова. Впервые о создании подобного подвижного состава изобретатели стали задумываться еще в самом начале XX столетия, однако по ряду причин воплощение данного проекта осуществить не удавалось на протяжении довольно длительного времени.

Только к 1969 году на территории тогдашнего ФРГ приступили к изготовлению подобного поезда, впоследствии нареченного маглевом, и укладыванию магнитной трассы. Запуск первого маглева под названием «Трансрапид-02» был произведен уже спустя два года.

Интересным является тот факт, что при изготовлении маглева немецкие инженеры основывались на записях, произведенных ученым Германом Кемпером, получившим патент на создание магнитоплана еще в 1934 году.

Первый маглев «Транрапид-02» высокоскоростным не назовешь, так как скорость он развивал всего лишь до 90 км/ч. Вместимость его также была очень низкой: всего четыре человека.

Последующая модель маглева, созданная в 1979 году, «Трансрапид-05» вмещала уже до 68 пассажиров и двигалась по пассажирской линии города Гамбурга, имеющей протяженность в 908 м, со скоростью 75 км/ч.


Трансрапид-05

Параллельно на другом конце континента, в Японии, в том же 1979 году был запущен маглев модели «МЛ-500», способный развить скорость аж до 517 км/ч.

Что такое маглев и каков принцип его работы?

Маглев (или попросту поезд на магнитной подушке) – это разновидность транспорта, управляемого и приводимого в движение посредством силы магнитного поля. При этом маглев не касается железнодорожного полотна, а «левитирует» над ним, удерживаемый искусственно созданным магнитным полем. При этом исключается трение, тормозящей силой выступает только аэродинамическое сопротивление.

На ближнемагистральных направлениях в будущем маглев может составить серьезную конкуренцию воздушному транспорту ввиду своей возможности развивать очень высокую скорость передвижения. На сегодняшний день повсеместному внедрению маглевов в большой мере препятствует то, что они не могут быть применены на традиционном магистральном железнодорожном покрытии. Маглев может передвигаться лишь на специально построенной магнитной магистрали, что требует очень крупных капиталовложений.

Также считается, что магнитный транспорт способен негативно воздействовать на организм машинистов и жителей приближенных к магнитным трассам регионов.

Преимущества маглевов

К достоинствам маглевов относится обширная перспектива достижения высоких скоростей, способных конкурировать даже с реактивной авиацией. Кроме того, маглев является довольно экономичным, в плане потребления электроэнергии, транспортом. К тому же практически отсутствует трение деталей, что позволяет существенно снизить уровень эксплуатационных расходов.

Автомобиль на магнитной подушке

Трудно ответить, какими будут автомобили в будущем, современные технологии развиваются семимильными шагами, что уже никого не увидишь проезжающим электрокаром или гибридом, уже довольно давно ведутся разработки автопилота, который также станет частью нашей повседневной жизни. Но всё-таки, каким же будет автомобиль будущего?

Наша команда Tesla решила взяться за этот вопрос и изложить свои идеи по поводу дальнейшего развития в автомобиле строении.

Последние 10 лет крупные автоконцерны активно стараются внедрить электрокары в нашу повседневную жизнь, и у многих компаний действительно есть машины способные заменить привычный нам всем ДВС. Но что ждет нас дальше? Предположим, что через 15-20 лет мы все пересядем в электромобили, они станут настолько удобными и практичными, что никто и не захочет сесть обратно в бензиновую колесницу. На наш взгляд автомобилестроение подвергнется кардинальным изменениям, мы сможем избавиться не только от бензиновых и дизельных двигателей, но и от привычных нам асфальтных дорог, заправок и СТО.

Оставив все эти пережитки прошлого, мы хотим предложить абсолютно новый вид автомобильного транспорта на магнитной подушке.

Только представьте: все автомобильные дороги, автомагистрали и дорожные развязки, заменит нам покрытие образующие магнитное поле, по которому будет парить автомобиль на магнитной подушке. Кажется, что это настоящая магия, но уверяем вас, что эта идея вполне реальна.

Когда в будущем мы придем к данной технологии для использования транспорта такого рода придётся заменить привычные нам дороги на магнитные, с помощью которых автомобиль с магнитной подушкой сможет подняться в воздух.

Создание электромагнитной платформы автомобиля послужит прорывом в науке и технике, на сегодняшний день даже ученые не имеют ещё внятного прототипа, однако создание сверх мощных неодимовых магнитов позволит преодолеть множество препятствий, которые возникали у инженеров ранее.

И так, ходовая часть автомобиля будет заменена на магнитное полотно. Вместо обычного двигателя в транспорте будет использоваться линейный двигатель — электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле, а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя.

Эта технология автомобилестроения имеет обширный ряд преимуществ, такие как:

  • Высокая скорость транспорта.
  • Высокая энергоэффективность. (КПД данного вида транспорта будет выше в сравнении с КПД современных автомобилей)
  • Снижение эксплуатационных затрат в связи со значительным уменьшением трения деталей.
  • Низкий шум.
  • Экологичность.

Все это позволит сделать нашу повседневную жизнь легче и проще, использование такого автомобиля позволит нам быстрее достигать конечной точки маршрута, экономить на содержании данного авто, ведь в него не нужно больше заливать топливо и тратить бешеные деньги на тех.обслуживание, а так же даст нам возможность дышать свежим воздухом, ведь этот вид транспорта полностью экологичен.

Такие автомобили могут появиться уже в ближайшее время, ведь разработки в данной области ведутся не один десяток лет.

Но все же рано говорить о том, что подобные технологии станут приоритетными в этом веке, тем не менее силы и ресурсы в создание новых транспортных средств продолжают вкладываться.

Как бы там ни было, прогресс не стоит на месте. Возможно пройдет еще не один год, а точнее не один десяток лет и однажды выйдя на улицу вы или ваши потомки увидят автомобильное движение, организованное не в один поток, а в два. Причем второй будет располагаться над первым.

Мы создали модель в программе Siemens NX — это программа для проектирования 3D моделей. NX для проектирования является интегрированным решением по проектированию изделий, которое упрощает и ускоряет процесс разработки изделий для инженеров, от которых требуется создание инновационных продуктов в среде совместной разработки. В отличие от решений, включающих только CAD, и закрытых корпоративных решений, NX для проектирования, предлагает высочайший уровень объединения проектировочных дисциплин в открытой среде совместной разработки.

Добавить комментарий

Закрыть меню