Математика древней Индии

Реферат

Математика

в древней Индии

Исполнитель: Цуй Александра

Проверил:_________________________

Белгород 2005

В Индии математика зародилась примерно тогда же, когда и в Египте, – пять с лишним тысяч лет назад. К началу нашего летоисчисления индийцы уже были замечательными математиками. Кое в чем они обогнали даже древних греков. Однако Индия была оторвана от других стран, – на пути лежали тысячи километров расстояния и высокие горы.

Индийские ученые сделали одно из важнейших в математике открытий. Они изобрели позиционную систему счисления – способ записи и чтения чисел. Чтобы назвать большое число, индийцам приходилось после каждой цифры произносить название разряда. Это было громоздко, неудобно, и индийцы стали поступать иначе. Например, число 278 396 читали так: два, семь, восемь, три, девять, шесть – сколько цифр – столько слов. А если в числе не было какого-нибудь разряда, как, например, в числах 206 или 7013, то вместо названия цифры говорили слово «пусто». Чтобы не получалось путаницы, при записи на месте «пустого» разряда ставили точку. Позднее вместо точки стали рисовать кружок, который на языке хинди назывался «сунья», что значит «пустое место». Арабские математики перевели это слово на свой язык.

Вместо «сунья» они стали говорить «сифр», а это уже знакомое нам слово. Слово «цифра» по наследству от арабов досталось и нам.

Генеалогия современных цифр.

Древние индийцы с их высокой интеллектуальностью и склонностью к абстрактному мышлению, естественно, должны были занять ведущее положение в математике. Европа заимствовала начатки арифметики и алгебры у арабов (чем и обьясняется название — арабские цифры), а арабы, в свою очередь, заимствовали их у Индии.

Поразительные успехи, достигнутые индийцами в математике, сейчас хорошо известны, и признано, что основы современной арифметики и алгебры были заложены еще в древней Индии. Примитивный метод использования абак и применение римских и подобных им цифр долгое время задерживал прогресс, пока, наконец, десять индийских цифр, включая знак нуль, не освободили человеческий разум от этих ограничений и не показали в новом свете значение чисел. Эти цифровые обозначения были единственными в своем роде и полностью отличались от всех иных обозначений, которые применялись в других странах. Сейчас они получили достаточно широкое распространение, и мы принимаем их как должное, однако в свое время они создали условия для революционного прогресса. Понадобилось много веков, чтобы эти цифровые обозначения пришли из Индии через Багдад в западный мир.

Сто пятьдесят лет назад, во времена Наполеона, Лаплас писал: «Индия дала нам остроумный метод выражения всех чисел посредством десяти знаков, причем, кроме величины каждого знака, имеет значение и его расположение. Эта глубокая и важная мысль кажется нам настолько простой, что мы не замечаем ее истинных достоинств, но ведь сама ее простота и большая легкость, которую она придала всем вычислениям, делают нашу арифметику одним из самых полезных изобретений. Мы оценим все величие этого достижения, когда вспомним, что мимо него прошел даже гений Архимеда и Апполония, двух величайших людей древности.» (L. Hogben. Mathematics for the Million. London. 1942).

Возникновение геометрии, арифметики и алгебры в Индии восходит к далеким временам. Прежде всего, существовала, вероятно, какого-то рода геометрическая алгебра, применявшаяся при начертании фигур для ведических алтарей.

В древнейших книгах упоминается о геометрическом методе преобразования квадрата в прямоугольник по заданной стороне: ax = c.

Геометрические фигуры до сих пор широко используются в индусских обрядах.

Первые хорошо сохранившиеся индийские тексты в области точных наук — это «Сиддханты», часть которых, «Сурья», дошла до нас, вероятно, в достаточно точно соответствующей оригиналу (примерно между 300 и 400 годами н. э.) форме. В этих книгах содержится в основном астрономия, там обнаружены эпициклы и шестидесятичные дроби. Такие факты позволяют предположить наличие влияния греческой астрономии, относящегося, быть может, к эпохе «Алмагеста». Возможно, что они указывают на непосредственный контакт с вавилонской астрономией. Но, кроме этого, «Сиддханты» содержат многочисленные типично индийские особенности. «Сурья Сидд-ханта» содержит таблицу значений синуса (джия), а не хорд.

Результаты, изложенные в «Сиддхантах», систематически разъяснялись и развивались в индийских математических школах, укоренившихся преимущественно в Уджджайне (Центральная Индия) и в Майсоре (Южная Индия) . Известны имена и книги отдельных индийских математиков, начиная с пятого столетия н. э.; некоторые книги доступны в английских переводах.

Наиболее известными математиками Индии были Ариабхата (прозванный «первым», около 500 г.) и Брахмагупта (около 625 г.). Насколько они были знакомы с результатами греков, вавилонян и китайцев, можно только предполагать, но, во всяком случае, они проявляют значительную оригинальность. Для их работ характерны арифметико-алгебраические разделы. В их склонности к неопределенным уравнениям проявляется некоторое родство с Диофантом.

Современником Брахмагупты был Бхаскара I, автор комментария к трактату Ариабхаты и астрономического сочинения «Маха-Бхаскария», содержащего математические разделы {неопределенные линейные уравнения, элементы тригонометрии и пр.).

За этими учеными в ближайшие столетия последовали другие, работавшие в тех же областях; в трудах последних представлено астрономическое, частично арифметико-алгебраическое направление, они занимались также измерениями и тригонометрией. Ариабхата I имел для π значение 3,1416.

Любимым предметом было нахождение рациональных треугольников и четырехугольников. Особенно успешно над этим работал Магавира из Майсорской школы (около 850 г.). Известны также трактаты Шридхары (IX — X вв.), Ариабхаты II (около950г.), Шрипати (XI в.) и др. Около 1150г. в Уджджайне, где работал Брахмагупта, жил и работал другой выдающийся математик, Бхаскара П.

Первое общее решение неопределенного уравнения первой степени ах + bу = с (а, b, с — целые числа) встречается у Брахмагупты. Поэтому, строго говоря, нет оснований называть неопределенные линейные уравнения диофантовыми. Диофант допускал еще и дробные решения, индийские математики интересовались только целочисленными. Они пошли дальше Диофанта и в том отношении, что допускали отрицательные корни уравнений, хотя это в свою очередь, должно быть, соответствует более древней практике, сложившейся под влиянием вавилонской астрономии. Например, для уравнения х2 — 45х = 250 Бхаскара II находил решения х = 50 и х = -5, но относительно приемлемости отрицательного корня он высказывал известный скептицизм. Его «Лилавати» в течение столетий оставалась на Востоке образцовой книгой по арифметике и искусству измерений; император Акбар перевел ее на персидский язык (1587 г.), в 1816 г. она была издана в Калькутте и после этого многократно переиздавалась как учебник математики для религиозных школ.

В древней Индии было найдено много ценнейших математических результатов; например, недавно стало известно, что ряды Грегори-Лейбница для были найдены уже при Нилаканте (ок. 1500 г.).

Пальма первенства принадлежала Индии в области арифметики и алгебры. Изобретатель или изобретатели десятичной системы и знака нуль неизвестны. Первое известное нам употребление знака нуль мы находим в одной из священных книг, датируемой примерно 200 годом до н.э. Считается вероятным, что десятичная система счисления была изобретена в начале христианской эры. Нуль, называется «сунья», или — ничто, изображался вначале в виде точки, а позже в виде маленького кружка. Он считался таким же числом, как и все остальные.

Профессор Холстед следующим образом подчеркивал важнейшее значение этого изобретения: «Значение введения знака нуль нельзя переоценить. Эта способность дать пустому ничто не только место, имя, образ, символ, но также и практическое значение типична для народа Индии, страны, из которой все это пришло. Это все равно, что создать из нирваны динамомашины. Ни одно математическое изобретение не имело такого значения для общего прогресса разума и могущества человечества».

Математика в Индии

В древней и средневековой математике народов Индии много общего с китайской математикой. В Индии математика тоже является очень древней наукой, издавна составляющей часть культуры. В ней тоже преобладали вычислительно-алгоритмические методы и отсутствовали попытки построения дедуктивных систем; геометрия индийцев — также практическая.

Эта общность характера науки и путей ее развития не случайна и отражает сходность путей исторического развития обеих великих стран и давние экономические и культурные связи между ними. В Индии к началу нашей эры уже сложилась развитая феодальная система организации общества. Длительная консервация феодальных отношений усугублялась кастовым расслоением социальных групп населения, что определило, несмотря на бурное временами течение политических событий, весьма медленный темп развития производства и науки.

Английские, французские, португальские колонизаторы в течение нескольких столетий насильственно задерживали естественное развитие производства, науки и культуры индийского народа. Только в наше время происходит процесс национального освобождения и подъема производительных сил Индии.

Самыми ранними памятниками математической культуры индийцев являются религиозные книги: сутры и веды. Их происхождение относят к VIII—VII вв. до н. э. Написаны они на давно уже умершем языке — санскритском. В них мы находим геометрические построения, составляющие важную часть ритуалов при постройке культовых сооружений: храмов, алтарей и т. д. В них можно найти первые способы квадрирования кругов, применение теоремы Пифагора. Видимо, вследствие требований архитектуры решалась и арифметическая задача о нахождении пифагоровых троек натуральных чисел.

Числовая система с древних времен определилась как десятичная. Столь же рано определилась склонность к оперированию большими числами, нашедшая отражение в легендах.

Будда, например, отличался феноменальным умением считать; он строил числовые десятичные системы до 1054, давая наименования каждому разряду. Женихи прекрасной богини Земли, добиваясь ее руки, обязаны были соревноваться в письме, арифметике, борьбе и стрельбе из лука. Победитель соревнования Сарватасидда придумал, в частности, шкалу чисел, идущих в геометрической прогрессии со знаменателем 100, до 107+9•46, т. е. до числа с 421 нулем. Пристрастие к операциям с большими числами сохранялось в течение всей истории математики в Индии.

Haиболее яркий период развития, оставивший самые значительные образцы математической литературы, — это V—XII вв. н. э. В это время трудились выдающиеся индийские ученые — математики и астрономы: Ариабхатта (конец V в.), Брахмагупта (род. 598 г.), Магавира (IX в.), Бхаскара Акарья (род. 1114 г.). От Ариабхатты, жившего в северо-восточной Индии, осталось сочинение в стихах астрономического и математического содержания. В нем сформулированы правила элементарной математики: арифметики, геометрии и тригонометрии. Брахмагупта также в стихотворной форме написал огромное сочинение в 20 книгах «Усовершенствованная наука Брамы», в котором 12-я книга посвящена арифметике и геометрии, а 18-я — алгебре и неопределенным уравнениям. Значительное математическое содержание имеют две книги Бхаскары: «Лилавати» и «Виджаганита». «Лилавати» (что значит «прекрасная») Бхаскара посвятил своей дочери. В поэтической манере в 13 отделах книги излагаются: 1) метрология; 2) действия над целыми числами и дробями и извлечение корней; 3) способ обращения, способ ложного положения и другие частные приемы решения задач; 4) задачи на бассейны и смеси; 5) суммирование рядов; 6) планиметрия; 7—11) вычисление различных объемов; 12) задачи неопределенного анализа; 13) задачи комбинаторики.

Другое сочинение Бхаскары — «Виджаганита» — состоит из восьми отделов: 1) действии над положительными и отрицательными числами; 2—3) неопределенные уравнения 1-й и 2-й степени; 4) линейные алгебраические уравнения; 5) квадратные уравнения; 6) системы линейных уравнений; 7—8) неопределенные уравнения
2-й степени.

Мы не ставим себе здесь целью описание всех источников, заслуг и роли отдельных лиц. Нашей целью является оценка уровня достижений математиков Индии, особенностей форм и методов математического исследования и путей развития индийской математики. Поэтому здесь мы дадим лишь общие характеристики.

Как было уже сказано, главной особенностью индийской математики является преобладание вычислительных приемов, преподносимых учащимся или читателям в догматической форме. Среди арифметических правил обращает на себя внимание широкое распространение правила обращения, которое состоит в следующем: задумывается число, но учащемуся или противнику сообщаются лишь последовательность операций с задуманным числом и конечный результат. Решение задачи состоит в последовательном проведении всех операций в обратном порядке. Например, в сочинении Бхаскары «Лилавати» перед неизвестной красавицей ставится задача: назвать число, которое, будучи умножено на три, увеличено затем на три четверти произведения, разделено на 7, уменьшено на

Оперирование большими числами, помимо отработки единой числовой десятичной системы с нулем и числовой символики, привело к введению в математику представлений о бесконечно больших числах. Бхаскара вводил это представление, рассматривая выражения вида

Индийские математики ввели и правильно трактовали и понятие отрицательного числа. Так, Брахмагупта разъясняет, что числа могут трактоваться либо как имущество, либо как долг. Правила операций с числами тогда таковы: сумма двух имуществ есть имущество, двух долгов — долг, имущества и долга — их разность, а если они равны — нуль. Сумма нуля и долга есть долг, имущества и нуля — имущество. Произведение двух имуществ или двух неимуществ есть имущество; результат произведения имущества на долг представляет убыток. То же правило справедливо и при делении. Квадрат имущества, или долга, есть имущество; имущество имеет два корня: один составляет прибыль, другой — долг. Корня убытка не существует, ибо таковой не может быть квадратом. Однако, вводя отрицательные числа, индийские математики не использовали их как равноправные элементы математики, считая их только чем-то вроде логических возможностей, потому что, по выражению Бхаскары, люди с ними не согласны. Кроме правил и задач арифметики в индийскую математику входили также решения ряда задач алгебры, неопределенного анализа, комбинаторных задач. К алгебре относятся в первую очередь правила решения линейных уравнений, их систем и квадратных уравнений.

Развитие методов решения задач неопределенного, или диофантова, анализа представляет одно из высших достижений индийской математики. Появление подобных методов — общее явление для всех древних математических культур. Причина того, что математики Индии, Греции, Китая и других стран интересовались решением пообных задач, лежит, по-видимому, в необходимости изучения периодически повторяющихся явлений, например в астрономии.

В самом деле, вопрос о периоде времени, состоящем одновременно из целого числа дней (х) и целого числа лет (у), приводит к неопределенному уравнению: 10 960у=30х. Другие вопросы, например о периоде повторения некоторых явлений, приводят к полным неопределенным уравнениям. Индийские ученые умели находить целочисленные решения различных видов неопределенных уравнений 1-й и 2-й степени.

Мы уже упоминали о характерной форме изложения, при которой не воспроизводится ни ход рассуждений, ни доказательство, что не дает возможности судить о теоретико-числовых методах индийских математиков. Однако то немногое, что известно, показывает наличие ряда теоретико-числовых методов.

В истории Индии имеется достаточно фактов, свидетельствующих о наличии экономических и политических связей с греческими, египетскими, арабскими государствами и с Китаем. В математике считается бесспорным индийское происхождение десятичной системы счисления с нулем и правил счета. Можно проследить заимствование индусами у греков некоторых геометрических сведений и т. д. Но количество этих фактов невелико. Вопрос о связях и взаимных влияниях математики Индии, Греции, Китая и арабских стран еще остается недостаточно выясненным.

» назад в меню

О математике в древней Индии

12Следующая ⇒

by КОЛПАКОВ А.Н. on 4 ИЮЛЯ 2011

Индия имеет большую и богатую самобытную культуру, начало которой уходит в седую древность. Много тысяч лет тому наза, еще до нашей эры, в Индии городские водосточные системы и оросительные каналы, строились многоэтажные здания из хорошо обожженного кирпича. В далеком прошлом индийцы владели искусством керамического производства (производство изделий обожженной глины), умело пользовались гончарным кругом, успешно развивали ювелирное дело (изготовление изделий из драгоценных камней и металлов).

Еще в глубокой древности Индия славилась знаниями в области астрономии, грамматики и других наук.

Наибольших успехов Индийские ученые достигли в областиматематики. Они явились основоположниками арифметики и алгебры, в разработке которых пошли дальше греков.

Величайшим достижением древнеиндийской математики является, прежде всего, открытие позиционной системы счисления, состоящей из десяти индийских цифр, включая и знак нуль, называемый по-индийски «сунья», что дословно означает «ничто». Интересно заметить, что в первоначальном начертании нуль изображался точкой и лишь спустя много веков – в виде маленького кружка. Кто первый из индийских ученых стал употреблять десятичную систему, неизвестно точно. Однако есть основание думать, что эта система была изобретена в начале первого века нашей эры. Что касается первого употребления знаку нуля, то это факт относится ко второму веку нашей эры.

Наиболее известными индийскими математиками являются Ариабхата (конец 1 века) , Брахмагупта (7 век) и Бхаскара (12 век).

Индийские математики далекого прошлого любили состязаться на публичных народных собраниях. По этому поводу один индийский автор 7 века, заканчивая свою книгу, писал: «Подобно тому, как солнце затмевает своим блеском звезды, так мудрец затмевает славу других людей, предлагая и особенно решая на народных собраниях математические задачи».

Заметим, что все указания и решения к индийским задачам даются сейчас в современной символике.

Задачи древней Индии:

1) Из четырех жертвователей второй дал вдвое больше первого. Третий дал втрое больше первого, четвертый в четверо больше первого, а все вместе они дали 132 монеты. Сколько монет дал первый.

Эта задача взята из бахшалийской рукописи, найденной в 1881 году при раскопках в Бахшали в северо-западной Индии. Рукопись выполнена на березовой коре и относиться к 3-му или 4-му веку нашей эры. Ученые-математики установили, что эта рукопись является неполной копией боле древних математических рукописей.

2) Пятая часть пчелиного роя села на цветок кадамба, Треть — на цветокх силиндха. Утроенная разность последних двух чисел пчел направилась к цветам кутая и осталась еще одна маленькая пчелка, летающая взад и вперед, привлеченная ароматом жасмина и пандуса. Спрашивается, сколько всего пчел.

Задача присутствует в трактате «сущность вычисления» («Ганитасара») индийского математика Сридхары, жившего в промежутке 7-10 в.в. Время жизни точно не установлено.

(Сридхара является автором ряда задач, которые широко использовались индийскими математиками последующих времен.

3) Два светила находятся на данном расстоянии (d) друг от друга, движутся одно к другому с данными скоростями и . Определить точку их встречи.

Задача взята из трактата «Ариабхатиам» известного индийского математика конца 5-го – начала 6-го века Ариабхаты. Этот трактат посвящен астрономии и математике. В его математической части Ариабхата дает ряд правил по арифметики, алгебре, геометрии и тригонометрии, нужных для астрономии и в первую очередь составления астрономических страниц. Ариабхата является автором многих задач по элементарной математике, одна из которых и приводится.

Развитие индийской математики

Развитие математики как науки в каждой древней цивилизации начиналось со счета. Он был неотъемлемой частью эволюции всего человечества. С помощью математического счета человек вел хозяйство, контролировал поголовье скота, производил расчет календаря, вел торговлю и т.п. Параллельно социуму развивалась и математика, которая начала свое движение со счета. Нельзя не отметить индийский способ записи чисел, который отличался некоторой изысканностью. Изначально для нумерации использовалась сиро-финикийская методика, а с шестого века до н.э. стали применять написание «брахми», с отдельными символами для цифр «1-9», которые после небольших видоизменений дошли до нас и называются «арабскими».

12Следующая ⇒

Не нашли, что искали? Воспользуйтесь поиском:

Добавить комментарий

Закрыть меню