Макроэргические связи в АТФ

Отрывок, характеризующий Макроэргическая связь

– Что ж он тебе еще говорил? Какие стихи то эти? Прочти… – задумчиво сказала мать, спрашивая про стихи, которые князь Андрей написал в альбом Наташе.
– Мама, это не стыдно, что он вдовец?
– Полно, Наташа. Молись Богу. Les Marieiages se font dans les cieux.
– Голубушка, мамаша, как я вас люблю, как мне хорошо! – крикнула Наташа, плача слезами счастья и волнения и обнимая мать.
В это же самое время князь Андрей сидел у Пьера и говорил ему о своей любви к Наташе и о твердо взятом намерении жениться на ней.
В этот день у графини Елены Васильевны был раут, был французский посланник, был принц, сделавшийся с недавнего времени частым посетителем дома графини, и много блестящих дам и мужчин. Пьер был внизу, прошелся по залам, и поразил всех гостей своим сосредоточенно рассеянным и мрачным видом.
Пьер со времени бала чувствовал в себе приближение припадков ипохондрии и с отчаянным усилием старался бороться против них. Со времени сближения принца с его женою, Пьер неожиданно был пожалован в камергеры, и с этого времени он стал чувствовать тяжесть и стыд в большом обществе, и чаще ему стали приходить прежние мрачные мысли о тщете всего человеческого. В это же время замеченное им чувство между покровительствуемой им Наташей и князем Андреем, своей противуположностью между его положением и положением его друга, еще усиливало это мрачное настроение. Он одинаково старался избегать мыслей о своей жене и о Наташе и князе Андрее. Опять всё ему казалось ничтожно в сравнении с вечностью, опять представлялся вопрос: «к чему?». И он дни и ночи заставлял себя трудиться над масонскими работами, надеясь отогнать приближение злого духа. Пьер в 12 м часу, выйдя из покоев графини, сидел у себя наверху в накуренной, низкой комнате, в затасканном халате перед столом и переписывал подлинные шотландские акты, когда кто то вошел к нему в комнату. Это был князь Андрей.

Макроэргические соединения (отмакро… и греч. érgon — деятельность, работа), высокоэргические, высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках, участвуя в процессах накопления и превращения энергии. К М. с.

относятся главным образом аденозинтрифосфорная кислота (АТФ) и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп. Все известные М. с. содержат фосфорильную (— PO2-3 или ацильную группу и описываются формулой , где Х — атом N, О, S или С, а Y — атом Р или С. Реакционная способность М. с. связана с повышенной электрофильностью (сродством к электрону) атома Y, что обусловливает, в частности, высокую свободную энергию гидролиза М. с., равную 25,1—58,6 кдж/моль (6—14 ккал/моль) (см. Биоэнергетика). К М. с. относятся также нуклеозидтри- (или ди)-фосфорные кислоты, пирофосфорная и полифосфорная кислоты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая кислоты, ацетил- и сукцинилкоферменты А, аминоацильные производные адениловой и рибонуклеиновых кислот и другие. М. с. связаны между собой ферментативными реакциями переноса фосфорильных групп, причём промежуточным продуктом обычно служит АТФ — кофермент многих ферментативных реакций. В целом биологическое значение АТФ и связанных с ней М. с. обусловлено их центральным положением на пересечении путей обмена веществ и энергии: они обеспечивают осуществление различных видов работы, играют ответственную роль в фотосинтезе, биолюминесценции, в биосинтезе белков, жиров, углеводов, нуклеиновых кислот и других природных соединений.

От М. с. следует отличать фосфорильные, ацильные и другие соединения, не имеющие макроэргических связей и потому не способные образовывать АТФ в реакциях переноса фосфорильных и ацильных групп: нуклеозидмонофосфорные кислоты, нуклеиновые кислоты, фосфосахара, фосфолипиды и другие. Однако окисление некоторых из этих соединений может вести к образованию М. с. (см. Окислительное фосфорилирование). См. также Аденозинфосфорные кислоты и Биоэнергетика.

1. Какие слова пропущены в предложении и заменены буквами (а—г)?

«В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты.»

Буквами заменены следующие слова: а – аденин, б – рибоза, в – три, г – фосфорной.

2. Сравните строение АТФ и строение нуклеотида. Выявите сходство и различия.

Фактически АТФ представляет собой производное аденилового нуклеотида РНК (аденозинмонофосфата, или АМФ). В состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза. Различия связаны с тем, что в составе аденилового нуклеотида РНК (как и в составе любого другого нуклеотида) есть лишь один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи, поэтому АТФ может выполнять функцию аккумулятора и переносчика энергии.

3. Что представляет собой процесс гидролиза АТФ? Синтеза АТФ? В чём заключается биологическая роль АТФ?

В процессе гидролиза происходит отщепление от молекулы АТФ одного остатка фосфорной кислоты (дефосфорилирование).

При этом разрывается макроэргическая связь, высвобождается 40 кДж/моль энергии и АТФ превращается в АДФ (аденозиндифосфорную кислоту):

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж

АДФ может подвергаться дальнейшему гидролизу (что происходит редко) с отщеплением ещё одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в АМФ (аденозинмонофосфорную кислоту):

АДФ + Н2О → АМФ + Н3РО4 + 40 кДж

Синтез АТФ происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (фосфорилирование). Этот процесс осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме клеток. Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:

АДФ + Н3РО4 + 40 кДж → АТФ + Н2О

АТФ является универсальным хранителем (аккумулятором) и переносчиком энергии в клетках живых организмов. Практически во всех биохимических процессах, идущих в клетках с затратами энергии, в качестве поставщика энергии используется АТФ. Благодаря энергии АТФ синтезируются новые молекулы белков, углеводов, липидов, осуществляется активный транспорт веществ, движение жгутиков и ресничек, происходит деление клеток, осуществляется работа мышц, поддерживается постоянная температура тела теплокровных животных и т. д.

4. Какие связи называются макроэргическими? Какие функции могут выполнять вещества, содержащие макроэргические связи?

Макроэргическими называют связи, при разрыве которых выделяется большое количество энергии (например, разрыв каждой макроэргической связи АТФ сопровождается высвобождением 40 кДж/моль энергии). Вещества, содержащие макроэргические связи, могут служить аккумуляторами, переносчиками и поставщиками энергии для осуществления различных процессов жизнедеятельности.

5. Общая формула АТФ — С10H16N5O13P3. При гидролизе 1 моль АТФ до АДФ выделяется 40 кДж энергии. Сколько энергии выделится при гидролизе 1 кг АТФ?

● Рассчитаем молярную массу АТФ:

М (С10H16N5O13P3) = 12 × 10 + 1 × 16 + 14 × 5 + 16 × 13 + 31 × 3 = 507 г/моль.

● При гидролизе 507 г АТФ (1 моль) выделяется 40 кДж энергии.

Значит, при гидролизе 1000 г АТФ выделится: 1000 г × 40 кДж : 507 г ≈ 78,9 кДж.

Ответ: при гидролизе 1 кг АТФ до АДФ выделится около 78,9 кДж энергии.

6. В одну клетку ввели молекулы АТФ, меченные радиоактивным фосфором 32Р по последнему (третьему) остатку фосфорной кислоты, а в другую — молекулы АТФ, меченные 32Р по первому (ближайшему к рибозе) остатку. Через 5 мин в обеих клетках измерили содержание неорганического фосфат-иона, меченного 32Р. Где оно оказалось выше и почему?

Последний (третий) остаток фосфорной кислоты легко отщепляется в процессе гидролиза АТФ, а первый (ближайший к рибозе) – не отщепляется даже при двухступенчатом гидролизе АТФ до АМФ. Поэтому содержание радиоактивного неорганического фосфата будет выше в той клетке, в которую ввели АТФ, меченную по последнему (третьему) остатку фосфорной кислоты.

Дашков М.Л.

Макроэргические соединения

Макроэргическими соединениями называют вещества, расщепление которых сопровождается выделением большого количества энергии. К макроэргическим соединениям относятся, главным образом, аденозинтрифосфорная кислота (АТФ) и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп, а также нуклеозидтри- (или ди)-фосфорные кислоты, пирофосфорная и полифосфорная кислоты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая кислоты, ацетил- и сукцинилкоферменты А, аминоацильные производные адениловой и рибонуклеиновых кислот и другие. Энергия макроэргических связей используется для совершения любой работы: активации соединений (например, глюкозы, чтобы могла начаться цепь ее окислительных превращений), синтеза биополимеров (нуклеиновых кислот, белков, полисахаридов), избирательного поглощения веществ из окружающей клетку среды и выброса из клетки ненужных продуктов, мышечного сокращения и восстановления активного состояния организма и т. д. Запас этих соединений позволяет организму быстро реагировать на изменение внешних условий и совершать физическую работу. При распаде обычной связи выделяется энергия около 12,5 кДж/моль. При распаде макроэргических связей выделяется энергия 25-50 кДж/моль и более. Такая связь обозначается значком » ~» (тильда). Например. В АТФ две макроэргические связи.

Аденозинтрифосфорная кислота – АТФ является одним из двух наиболее важных источников энергии в любой клетке. Также АТФ необходим для работы ионных каналов. Например, Na – K насос выкачивает 3 иона натрия из клетки и вкачивает 2 иона калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов. АТФ является предшественником вторичного мессенджера цАМФ (циклический аденозинмонофосфат). цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы – это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии. Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором.

Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот.

Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.

Использование креатинфосфата для ресинтеза АТФ протекает по схеме:

Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает ресинтез АТФ в первые секунды работы, когда ни анаэробный гликолиз, ни аэробное окисление глюкозы и жирных кислот еще не активировано, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода. При распаде макроэргической связи креатинфосфата образуется 42 кДж/моль энергии.

Макроэргическая связь фосфоенолпирувата аккумулирует 54 кДж/моль энергии, тиоэфирная связь (ацетилкофермент А) – 34 кДж/моль.

Дата добавления: 2018-02-08; просмотров: 83;

Макроэргические связи — это ковалентные связи, которые гидролизуются с выделением значительного количества энергии: 30 кДж/моль и более (свободная энергия гидролиза).

Вообще термин «макроэргическая связь» используется исключительно для связей, энергия которых используется в метаболизме и не указывает на истинную величину энергии связей.

Обычно это относится к макроэргическим молекулам — биологическим молекулам, которые способны накапливать и передавать энергию в ходе реакции. При гидролизе одной из связей высвобождается более 20 кДж/моль. По химическому строению макроэрги — чаще всего ангидриды карбоновой и фосфорной кислот, а также других слабых кислот. Примеры макроэргических соединений — молекулы АТФ, ГТФ и НАД. В АТФ имеются 2 макроэргические связи.

>Литература

  • . // Словарь ботанических терминов. — Киев: Наукова Думка. Под общей редакцией д.б.н. И.А. Дудки. 1984.

Литва была маленькой, но очень богатой страной, с великолепным хозяйством и огромными фермами, хозяева которых в советские времена стали называться «кулаками», и та же советская власть стала их очень активно «раскулачивать»… И вот именно для этих «карательных экспедиций» отбирались лучшие комсомольцы, что бы показать остальным «заразительный пример»… Это были друзья и знакомые тех же «лесных братьев», которые вместе ходили в одни и те же школы, вместе играли, вместе ходили с девчонками на танцы… И вот теперь, по чьему-то сумасшедшему приказу, вдруг почему-то стали врагами и должны были друг друга истреблять…

После двух таких походов, в одном из которых из двадцати ушедших ребят вернулись двое (и папа оказался одним из этих двоих), он до полусмерти напился и на следующий день написал заявление, в котором категорически отказывался от дальнейшего участия в любых подобного рода «мероприятиях». Первой, последовавшей после такого заявления «приятностью» оказалась потеря работы, которая в то время была ему «позарез» нужна. Но так как папа был по-настоящему талантливым журналистом, ему сразу же предложила работу другая газета – «Каунасская Правда» – из соседнего городка. Но долго задержаться там, к сожалению, тоже не пришлось, по такой простой причине, как коротенький звонок «сверху»… который вмиг лишил папу только что полученной им новой работы. И папа в очередной раз был вежливо выпровожен за дверь. Так началась его долголетняя война за свободу своей личности, которую прекрасно помнила уже даже и я.

Обмену веществ сопутствует обмен энергии. Каждое органическое соединение живой материи обладает определенным запасом энергии, которая заключена в химических связях между атомами. При разрыве химической связи происходит изменение уровня свободной энергии соединения. Если изменение уровня свободной энергии соединения при разрыве химической связи составляет более 25 кДж/моль, такая связь называется макроэргической. Не следует путать свободную энергию соединения с энергией связи, под которой понимается энергия, необходимая для разрыва связи между двумя атомами в любой молекуле. Соединения, содержащие макроэргические связи, называются макроэргическими.

Стандартная свободная энергия гидролиза (ΔG°) некоторых органических соединений

Соединение

— ΔG°, кДж/моль

Фосфоенолпировиноградная кислота

61,7

Карбамоилфосфат

51,5

1,3 — Дифосфоглицериновая кислота

49,1

Креатинфосфат

40,1

Аденозинтрифосфорная кислота (АТФ)

32,5

Аденозиндифосфорная кислота (АДФ)

28,3

Глюкозо — 1 — фосфат

20,8

Фруктозо — 6 — фосфат

15,8

Глюкозо — 6 — фосфат

13,8

Рассмотрим структурные формулы двух соединений, которые играют важную роль в энергообеспечении мышечной работы — АТФ и креатинфосфата:


Аденозинтрифосфорная кислота (АТФ)


Креатинфосфат (Кф)

Ключевым веществом в энергетическом обмене является АТФ, так как, с одной стороны, она возникает из других макроэргических соединений в ходе некоторых реакций, а с другой, существует много процессов, в ходе которых синтезируются макроэргические соединения при участии АТФ. АТФ является главным используемым непосредственно донором свободной энергии. В клетках организма АТФ расходуется после ее образования в течение 1 мин. Оборот АТФ очень высок. Например, человек в покое расходует около 40 кг АТФ за 24 ч, а в период интенсивной работы скорость использования АТФ достигает 0,5 кг за 1 минуту.

Однако АТФ — главное макроэргическое вещество организма — не является соединением, наиболее «богатым» энергией, а находится в середине энергетической шкалы.

Освобождение энергии фосфатной связи АТФ возможно двумя путями. Первый путь — это отщепление концевого фосфата, в результате образуется АДФ и фосфорная кислота:

АТФ → АДФ + Н3РО4

Другой путь освобождения энергии фосфатной связи АТФ — пирофосфатное расщепление:

АТФ → АМФ + Н4Р2О7

Пирофосфатное расщепление в биологических процессах встречается реже. Примером может служить образование аминоациладенилатов и ацил-КоА.

Основными функциями метаболизма являются:

  • Распад структурных компонентов клетки;
  • Аккумуляция энергии, извлекаемой при распаде химических веществ;
  • Использование энергии для синтеза необходимых молекулярных компонентов и совершения работы.

Молодой растущий организм характеризуется преобладанием анаболических процессов над катаболическими.

Это и понятно. Анаболические процессы обеспечивают рост организма, увеличение объема тканей и органов. Различия в средней скорости синтеза и распада веществ наиболее выражены сразу после рождения. К 17 — 19 годам в организме устанавливается динамическое равновесие между этими двумя фазами метаболизма. С этого возраста рост организма практически прекращается. К пожилому возрасту начинают преобладать катаболические процессы, что приводит к уменьшению содержания в организме ряда важнейших для жизнедеятельности веществ. Следствием этого является снижение силы мышц и функциональных возможностей внутренних органов.

Окружающая среда воздействует на организм порой разрушающе. В организме есть механизмы, способные поддерживать его в нормальном состоянии. Поддержание постоянного внутреннего состояния организма называется гомеостазом и является следствием.

Добавить комментарий

Закрыть меню