Кривые 2 порядка

Примеры на тему: ”Кривые второго порядка”.

Пример 1.Установить, что уравнение 5×2+9y2-30x+18y+9=0 определяет эллипс. Найти его центр С, полуоси, координаты фокусов F1, F2, эксцентриситет и уравнения директрис. Сделать чертеж.

Решение: 1. В заданном уравнении сгруппируем слагаемые, содержащие одноименные координаты и вынесем коэффициенты при квадратах за скобки:

5(x2-6x)+9(y2+2y)+9=0.

Дополним выражения, стоящие в скобках, до полного квадрата и полученные свободные константы перенесем в правую часть:

5(x2-6x+9-9)+9(y2+2y+1-1)+9=0,

5((x-3)2-9)+9((y+1)2-1)+9=0,

5(x-3)2+9(y+1)2=45.

Разделим обе части уравнения на 45, получим

.

2. Введем новую систему координат XOY, полученную сдвигом по каждой из координатных осей, и связанную со старой декартовой системой координат равенствами:

(1).

Тогда, исследуемое уравнение кривой относительно новых осей примет вид:

, .

Это есть канонический вид эллипса с центром (0,0), большой полуосью a=3, малой полуосью b= . Фокусы эллипса располагаются на оси OX на расстоянии с= от начала координат О, в точках 1(с, 0), 2(-c, 0) в новой системе координат XOY.

Вычисляем, с= = =2, 1(2, 0), 2(-2, 0). Мера сжатия, то есть эксцентриситет, дается равенством e= . Отсюда e= .Директрисы эллипса в системе XOY задаются уравнениями X= . В нашем случае, X= .

3. Чтобы найти координаты центра и фокусов в старой системе xoy, воспользуемся равенствами (1), осуществляющими связь систем координат:

центр С: , C(3, -1),

фокусы F1 : , F1(5,-1), F2: , F2(1,-1).

Уравнения директрис: x-3= .

4. Теперь построим эллипс. С помощью параллельного переноса системы координат xoy образуем новую систему

координат XOY так, чтобы новое начало координат О совпадало с точкой С(3, -1). При указанном выборе, оси координат системы XOY являются осями симметрии эллипса, а точка О- центром симметрии. Теперь симметрично О по оси OX отложим отрезки длины a=3, а по оси OY отрезки длины .

Соединив найденные вершины, получим эллипс. На оси OX симметрично относительно О на расстоянии с=2 отложим точки F1, F2-фокусы эллипса. Так как директрисы эллипса описываются уравнениями x=const, то они располагаются параллельно OY, причем одна из них проходит через

точку (7,5 ; 0), другая через (-1,5; 0).

Пример 2. Установить, что уравнение 16×2-9y2-64x-54y-161=0 определяет гиперболу. Найти ее центр С, полуоси, координаты фокусов F1, F2, вершины А1, А2 , эксцентриситет , уравнения директрис и асимптот. Сделать чертеж.

Решение: 1. В уравнении линии выделим полные квадраты при одноименных переменных:

16(x-2)2-9(y+3)2=144.

Разделив обе части уравнения на 144, будем иметь:

2. Введем новую систему координат XOY, полученную сдвигом по каждой из координатных осей и связанную с xoy равенствами:

(2).

В этой системе исследуемое уравнение представляет собой каноническое уравнение гиперболы:

с центром в точке O (0,0), вещественной полуосью а=4 и мнимой b=4. Точки 1(с, 0), 2(-c, 0), где с= являются фокусами гиперболы, отсюда находим с= =5, 1(5, 0), 2(-5, 0). Эксцентриситет e= , в нашем случае e= . Вершины гиперболы располагаются по оси OX симметрично относительно начала координат и на расстоянии a=3 от центра, поэтому 1(3, 0), 2(-3, 0). По формулам асимптот и директрис:

Y= X и X= , найдем

Y= X — уравнения асимптот, X= -уравнения директрис.

3. Вернемся к исходной системе координат xoy, воспользовавшись равенствами (2):

C(2;-3), F1(7;-3), F2(-3; -3), A1(5; -3), A2(-1; -3), асимптоты: y+3= (x-2), директрисы: x-2= .

4. Теперь построим гиперболу. С помощью параллельного переноса системы координат xoy образуем новую систему координат XOY так, чтобы новое начало координат О совпадало с точкой С(2, -3).

При указанном выборе, оси координат системы XOY являются осями симметрии гиперболы, а точка О- центром симметрии.

Теперь симметрично О по оси OX отложим отрезки длины a=3, а по оси OY отрезки длины b=4, образуем основной прямоугольник гиперболы. При пересечении основного прямоугольника с осью OX образуются вершины А1, А2. Через противоположные вершины основного прямоугольника проведем прямые, которые будут являться асимптотами гиперболы. Теперь проводя через вершины и приближаясь к асимптотам,

рисуем ветви гиперболы. F1, F2-фокусы гиперболы располагаются по оси абсцисс OX симметрично начала координат О на расстоянии с=5.

Пример 3.Установить, что уравнение x=-2y2+12y-14 определяет параболу, найти ее вершину, параметр, фокус, директрису. Сделать чертеж.

Решение: 1. В заданном уравнении сгруппируем слагаемые содержащие переменную y, вынесем коэффициент при квадрате за скобку и выделим полный квадрат:

x= -2(y-3)2+4, x – 4= -2(y-3)2.

2. Введем новую систему координат XOY, связанную со старой , следующими формулами:

, (3)

тогда исследуемое уравнение относительно новых осей примет вид:

X= -2Y2 , Y2= — X.

Полученное уравнение представляет собой каноническую форму уравнения параболы, симметричной относительно оси OX, с ветвями, направленными в отрицательную сторону OX, и вершиной в точке (0; 0). Константа перед X, есть величина 2p, поэтому 2p= , а параметр p= . Фокус и уравнение директрисы при таком расположении параболы находятся по формулам , X= , отсюда имеем фокус , директриса X= .

3. Вернемся к исходной системе координат xoy. Используя равенства (3), получаем: A(4;3), F(3 ; 3), директриса x=4 .

4. Построение параболы. С помощью параллельного переноса системы координат xoy так, чтобы новое начало координат О совпадало с точкой А(4; 3), образуем новую систему XOY.

Рисуем параболу с вершиной в точке А=О и обладающую перечисленными выше свойствами.

Фокус параболы лежит на расстоянии = от вершины. Директриса параболы проходит через точку (4 ; 0) параллельно OY.

Классификация кривых второго порядка

⇐ Предыдущая1234567Следующая ⇒

Невырожденные кривые

Кривая второго порядка называется невырожденной, если Могут возникать следующие варианты:

  • Невырожденная кривая второго порядка называется центральной, если
    • эллипс — при условии D> 0 и ΔI< 0;
      • частный случай эллипса — окружность — при условии I2 = 4D или a11 = a22,a12 = 0;
    • мнимый эллипс (ни одной вещественной точки) — при условии ΔI> 0;
    • гипербола — при условии D< 0;
  • Невырожденная кривая второго порядка называется нецентральной, если ΔI = 0
    • парабола — при условии D = 0.

Вырожденные кривые

Кривая второго порядка называется вырожденной, если Δ = 0. Могут возникать следующие варианты:

  • вещественная точка на пересечении двух мнимых прямых (вырожденный эллипс) — при условии D> 0;
  • пара вещественных пересекающихся прямых (вырожденная гипербола) — при условии D< 0;
  • вырожденная парабола — при условии D = 0:
    • пара вещественныхпараллельных прямых — при условии B< 0;
    • одна вещественная прямая (две слившиеся параллельные прямые) — при условии B = 0;
    • пара мнимыхпараллельных прямых (ни одной вещественной точки) — при условии B> 0.

Диаметры и центр кривой второго порядка

Диаметром кривой второго порядка называется геометрическое место середин параллельных хорд этой кривой. Полученный таким образом диаметр называется сопряжённым этим хордам или их направлению. Диаметр, сопряжённый хордам, образующих угол θ с положительным направлением оси Ox, определяется уравнением:

Если выполняется условие то все диаметры кривой пересекаются в одной точке — центре, а сама кривая называется центральной. В противном случае (D = 0) все диаметры кривой либо параллельны, либо совпадают.

Координаты центра определяются системой уравнений:

Решая эту систему относительно x0 и y0, получим:

Если кривая центральная, то перенос начала координат в её центр приводит уравнение к виду

где — координаты относительно новой системы.

Главные оси и вершины кривой второго порядка

Главной осью кривой второго порядка называется её диаметр, перпендикулярный к сопряжённым к ним хордам. Этот диаметр является осью симметрии кривой. Каждая центральная кривая либо имеет две взаимно перпендикулярные оси, либо все диаметры являются главными осями.

В последнем случае кривая является окружностью. Нецентральные кривые имеют лишь одну главную ось. Точки пересечения главной оси с самой кривой называются её вершинами.

Направляющие косинусы нормалей к главным осям удовлетворяют уравнениям

где λ — отличный от нуля корень характеристического уравнения. Направления главных осей и сопряжённых им хорд называются главными направлениями кривой. Угол между положительным направлением оси Ox и каждым из двух главных направлений определяется формулой

Из всех видов кривых второго порядка только окружность имеет неопределённые главные направления.

Уравнения

Общее уравнение в матричном виде

Общее уравнение кривой можно записать в матричном виде

Канонический вид

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу). Параметры канонических уравнений весьма просто выражаются через инварианты и корни характеристического уравнения (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Для центральной кривой в каноническом виде её центр находится в начале координат.

Через эксцентриситет

Каноническое уравнение любой невырожденной кривой второго порядка при помощи подходящего преобразования начала координат может быть приведено к виду

В этом случае кривая проходит через начало новой системы координат, а ось Ox является осью симметрии кривой. Данное уравнение выражает тот факт, что невырожденная кривая второго порядка является геометрическим местом точек, отношение расстояний которых (эксцентриситет) от данной точки (фокуса) и от данной прямой (директрисы) постоянно. Кроме того, при кривая является окружностью, при — эллипсом, при — параболой, при — гиперболой.

Уравнение директрисы кривой выражается уравнением а координаты фокуса Директриса перпендикулярна оси симметрии, проходящей через фокус и вершину кривой (фокальная ось). Расстояние между фокусом и директрисой равно

Если кривая второго порядка центральная (эллипс или гипербола), то прямая

является осью симметрии и, следовательно, кривая имеет два фокуса и две директрисы.

Параметр p называется фокальным параметром и равен половине длины хорды, проходящей через фокус и перпендикулярной к фокальной оси (фокальная хорда).

Полярные координаты

Если взять в качестве полюса полярной системы координат фокус невырожденной кривой второго порядка, а в качестве полярной оси — её ось симметрии, то в полярных координатах ρ, φ уравнение кривой будет иметь вид

⇐ Предыдущая1234567Следующая ⇒

Кривые 2-го порядка: решения онлайн

Задача 1. Привести к каноническому виду уравнение кривой 2 порядка, найти все ее параметры, построить кривую.

$$9x^2-4y^2-90x-8y+185=0.$$

Решение (гипербола)

Задача 2. Дана кривая. Привести к каноническому виду. Построить и определить вид кривой.

$$6x^2+2\sqrt{5}xy+2y^2=21.$$

Решение (эллипс)

Задача 3. Выяснить вид кривой по общему уравнению, найти её параметры и положение в системе координат. Сделать рисунок.

$$3x^2-6y^2-12x-108y-492=0.$$

Решение задачи (гипербола)

Задача 4. Общее уравнение кривой второго порядка привести к каноническому. Найти координаты центра, координаты вершин и фокусов. Написать уравнения асимптот и директрис. Построить линии на графики, отметить точки.

$$9x^2+25y^2-18x-100y-116=0.$$

Решение задачи (эллипс)

Задача 5. Дана кривая $y^2+6x+6y+15=0$.
1. Докажите, что данная кривая – парабола.
2. Найдите координаты ее вершины.
3. Найдите значения ее параметра $р$.
4. Запишите уравнение ее оси симметрии.
5. Постройте данную параболу.

Исследование параболы

Задача 6. Дана кривая $5x^2+5y^2+6xy-16x-16y=16$.
1. Докажите, что эта кривая – эллипс.
2. Найдите координаты центра его симметрии.
3. Найдите его большую и малую полуоси.
4. Запишите уравнение фокальной оси.
5.

Постройте данную кривую.

Исследование эллипса

Задача 7. Найти уравнения параболы и её директрисы, если известно, что парабола имеет вершину в начале координат и симметрична относительно оси $Ox$ и что точка пересечения прямых $y=x$ и $x+y-2=0$ лежит на параболе.

Задача о параболе

Задача 8. Составить уравнение кривой, для каждой точки которой отношение расстояния до точки $F(0;10)$ к расстоянию до прямой $x=-4$ равно $\sqrt{2/5}$. Привести это уравнение к каноническому виду и определить тип кривой.

Решение о кривой 2 порядка

Задача 9. Даны уравнения асимптот гиперболы $y=\pm 5x/12$ и координаты точки $M(24,5)$, лежащей на гиперболе. Составить уравнение гиперболы.

Составление уравнения гиперболы

Задача 10. Даны уравнение параболы $y=1/4 x^2+1$ и точка $C(0;2)$, которая является центром окружности. Радиус окружности $r=5$.
Требуется найти
1) точки пересечения параболы с окружностью
2) составить уравнение касательной и нормали к параболе в точках её пересечения с окружностью
3) найти острые углы, образуемые кривыми в точках пересечения. Чертёж.

Взаимное расположение параболы и окружности

Примеры решений по аналитической геометрии

Введение

1.Кривые второго порядка

1.1 Эллипс

1.2 Гипербола

1.3 Парабола

2.Теоремы, связанные с кривыми второго порядка

Литература

Введение

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижении второй космической скорости тело по параболе покинет поле притяжения Земли.

1. Кривые второго порядка

Кривой 2-го порядка называется линия на плоскости, которая в некоторой декартовой системе координат определяется уравнением

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0

где a, b, c, d, e, f — вещественные коэффициенты, причем a2 + b2 + c2 ≠ 0 .

Вид кривой зависит от четырёх инвариантов:

инварианты относительно поворота и сдвига системы координат:

инвариант относительно поворота системы координат (полуинвариант):

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой:

Так, например, невырожденная кривая

оказывается вещественным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

Или

λ2 − Iλ + D = 0.

Корни этого уравнения являются собственными значениями вещественной симметричной матрицы и, как следствие этого, всегда вещественны:

Кривые второго порядка классифицируются на невырожденные кривые и вырожденные.

Доказано, что кривая 2–го порядка, определяемая этим уравнением принадлежит к одному из следующих типов: эллипс, гипербола, парабола, пара прямых (пересекающихся, параллельных или совпадающих), точка, пустое множество.

Иными словами, для каждой кривой 2-го порядка (для каждого уравнения) существует такая система координат, в которой уравнение кривой имеет вид:

1.1 Эллипс

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек плоскости, называемых фокусами эллипса, есть величина постоянная. Отрезки, соединяющие точку эллипса с фокусами, называются фокальными радиусами точки.

Если эллипс описывается каноническим уравнением

где a > 0 , b > 0, a > b > 0 — большая и малая полуоси эллипса, то фокусы эллипса расположены симметрично на оси абсцисс и имеют координаты (−c, 0) и ( c, 0), где

Величина e = c/a называется эксцентриситетом эллипса.

По определению эллипса r1 + r2 = 2a, r1 и r2 − фокальные радиусы, их длины вычисляются по формулам

Если фокусы эллипса совпадают, то эллипс является окружностью.

1.2 Гипербола

Гиперболой называется кривая второго порядка, которая в некоторой декартовой системе координат описывается уравнением

где a > 0, b > 0 — параметры гиперболы.

Это уравнение называется каноническим уравнением гиперболы, а система координат, в которой гипербола описывается каноническим уравнением, называется канонической.

В канонической системе оси координат являются осями симметрии гиперболы, а начало координат — ее центром симметрии.

Точки пересечения гиперболы с осью OX ( ± a, 0) называются вершинами гиперболы.

С осью OY гипербола не пересекается.

Отрезки a и b называются полуосями гиперболы.

Рис.1

Прямые ay − bx = 0 и ay + bx = 0 — асимптоты гиперболы, при удалении точки гиперблы в бесконечность, соответствующая ветвь гиперболы приближается к одной из асимптот.

Уравнение описывает гиперболу, вершины которой лежат на оси OY в точках (0, ± b).

Рис.2

Такая гипербола называется сопряженной к гиперболе её асимптоты — те прямые ay − bx = 0 и ay + bx = 0. Говорят о паре сопряжённых гипербол.

1.3 Парабола

Параболой называется кривая второго порядка, которая в некоторой декартовой системе координат описывается уравнением

y2 = 2 px

где p > 0 — параметр параболы.

Такое уравнение называется каноническим уравнением параболы, а система координат, в которой парабола описывается каноническим уравнением, называется канонической.

В канонической системе ось абсцисс является осью симметрии параболы, а начало координат — её вершиной.

Рис.3

Уравнения y2 = −2 px, x2 = 2 py, и x2 = −2 py, p > 0, в той же самой канонической системе координат также описывают параболы:

2. Теоремы, связанные с кривыми второго порядка

Теоремма Паскамля — теорема проективной геометрии, которая гласит, что:

Если шестиугольник вписан в окружность либо любое другое коническое сечение (эллипс, параболу, гиперболу, даже пару прямых), то точки пересечения трёх пар противоположных сторон лежат на одной прямой.Теорема Паскаля двойственна к теореме Брианшона.

Теорема Брианшона является классической теоремой проективной геометрии. Она сформулируется следующим образом:

Если шестиугольник описан около конического сечения, то три диагонали, соединяющие противоположные вершины этого шестиугольника, проходят через одну точку.

В частности, в вырожденном случае:

Если стороны шестиугольника проходят поочерёдно через две данные точки, то три диагонали, соединяющие его противоположные вершины, проходят через одну точку.

Теорема Брианшона двойственна к теореме Паскаля, а её вырожденный случай двойственен к теореме Паппа.

Литература

1. Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64-69.

2. Корн Г., Корн Т. 2.4-5. Характеристическая квадратичная форма и характеристическое уравнение // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 64.

3. В.А.

Ильин, Э.Г. Позняк. Аналитическая геометрия, гл. 6. М.: «Наука», 1988.

Кривые второго порядка

Общим уравнением второго порядка называется уравнение вида:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0

где коэффициенты A,B,C одновременно не равны нулю.
Линии, определяемые такими уравнениями, называются кривыми второго порядка.
Центром некоторой линии называется такая точка плоскости, по отношению к которой точки этой линии расположены симметрично парами.
Линии второго порядка, обладающие единственным центром, называются центральными.
Координаты центра S(x0 ; y0) линии определяются из системы:
Обозначим через .

При Δ≠0 кривая второго порядка будет центральной.
Причем, при Δ>0 уравнение является уравнением эллиптического типа. Каждое эллиптическое уравнение является уравнением либо обыкновенного эллипса, либо вырожденного эллипса (точка), либо мнимого эллипса (в этом случае уравнение не определяет на плоскости никакого геометрического образа).
При Δ<0 уравнение является уравнением гиперболического типа. Каждое гиперболическое уравнение определяет либо обыкновенную гиперболу, либо вырожденную (пару пересекающихся прямых).
При Δ=0 линия второго порядка не является центральной. Такие уравнения называются уравнениями параболического типа и определяют на плоскости либо обыкновенную параболу, либо пару параллельных (или совпадающих) прямых, либо не определяют на плоскости никакого геометрического образа
Классификация кривых второго порядка:

Добавить комментарий

Закрыть меню