Фотоэффект и его законы

Квантовые свойства света

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается не непрерывно, а отдельными порциями — квантами (или фотонами). Энергия Е каждого фотона определяется формулой Е = hv, где h — коэффициент пропорциональности — постоянная Планка, v— частота света. Опытным путем вычислили h = 6,63·10-34 Дж·с. Гипотеза M.Планка объяснила многие явления, а именно, явление фотоэффекта, открытого в 1887 г. немецким ученым Г. Герцем.

Далее фотоэффект изучил экспериментально русский ученый Столетов.

Фотоэффект и его законы

Фотоэффект — это вырывание электронов из вещества под действием света.
В результате исследований было установлено 3 закона фотоэффекта:
1. Фототок насыщения прямо пропорционален падающему световому потоку.
2. Максимальная кинетическая энергия фотоэлектронов линейно растает с частотой света и зависит от его интенсивности.
3. Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах фотоэффекта нет.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых). Работа выхода — это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Она зависит от типа металла и состояния его поверхности. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид:

— это уравнение Эйнштейна.

Если hv <Авых , то фотоэффекта не происходит. Предельную частоту vmin и предельную длину волны λmax называют красной границей фотоэффекта. Она выражается так: vmin =A/h, λmax= λкр = hc/A, где λmax ( λкр ) – максимальная длина волны , при которой фотоэффект еще наблюдается. Красная граница фотоэффекта для разных веществ различна, т.к. А зависит от рода вещества.

Применение фотоэффекта в технике.
Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. На этом явлении (внутреннего фотоэффекта) основано устройство фоторезисторов. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в часах, микрокалькуляторах. Полупроводниковые фотоэлементы используются в солнечных батареях на космических кораблях, в первых автомобилях.

В современной трактовке гипотеза квантов утверждает, что энергия E колебаний атома или молекулы может быть равна hν, 2hν, 3hν и т.д., но не существует колебаний с энергией в промежутке между двумя последовательными целыми, кратными . Это означает, что энергия не непрерывна, как полагали на протяжении столетий, а квантуется, т.е. существует лишь в строго определенных дискретных порциях. Наименьшая порция называется квантом энергии. Гипотезу квантов можно сформулировать и как утверждение о том, что на атомно-молекулярном уровне колебания происходят не с любыми амплитудами. Допустимые значения амплитуды связаны с частотой колебания ν.

В 1905 г. Эйнштейн выдвинул смелую идею, обобщавшую гипотезу квантов, и положил ее в основу новой теории света (квантовой теории фотоэффекта). Согласно теории Эйнштейна, свет с частотой νне только испускается, как это предполагал Планк, но и распространяется и поглощается веществом отдельными порциями (квантами), энергия которых . Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме (с). Квант электромагнитного излучения получил название фотон.

Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся.

Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта.

Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом. Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления:

· при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией;

выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света.

Совершенно иное предсказывает фотонная (корпускулярная) теория. Прежде всего, заметим, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную hν). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Т.к. электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет, для большинства металлов, величину порядка нескольких электронвольт). Если частота ν падающего света мала, то энергии и энергии фотона недостаточно для того, чтобы выбить электрон с поверхности металла. Если же , то электроны вылетают с поверхности металла, причем энергия в таком процессе сохраняется, т.е. энергия фотона (hν) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:

(2.3.1)

Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее.

1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта).

2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта). График этой зависимости представлен на рис. 2.3.

,


Рис. 2.3

3. Если частота ν меньше критической частоты , то выбивание электронов с поверхности не происходит (III закон).

Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта.

Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h.

В 1926 г. российские физики П.И. Лукирский и С.С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом служили посеребренные стенки стеклянного сферического баллона, а катодом – шарик (R ≈ 1,5 см) из исследуемого металла, помещенного в центр сферы. Такая форма электродов позволяла увеличить наклон ВАХ и тем самым более точно определить задерживающее напряжение (а следовательно, и h). Значение постоянной Планка h, полученное из этих опытов, согласуется со значениями, найденными другими методами (по излучению черного тела и по коротковолновой границе сплошного рентгеновского спектра). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.

Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон. Т.е. опять пришли к понятию корпускула (частица).

Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4).

Рис. 2.4

Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч. Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов.

Фотон обладает энергией . Для видимого света длина волны λ = 0,5 мкм и энергия Е = 2,2 эВ, для рентгеновских лучей λ = мкм и Е = 0,5 эВ.

Фотон обладает инертной массой, которую можно найти из соотношения :

;
(2.3.2)

Фотон движется со скоростью светаc = 3·108 м/с. Подставим это значение скорости в выражение для релятивистской массы:

.

Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c.

Найдем связь энергии с импульсом фотона.

Мы знаем релятивистское выражение для импульса:

. (2.3.3)

И для энергии:

. (2.3.4)

Из (2.3.3) найдем :

; ;
;
. (2.3.5)

Подставив выражение (2.3.5) в выражение для энергии (2.3.4), получим связь между энергией и импульсом:

;
;
. (2.3.6)

Или

.

Но т. к. для покоящегося фотона , . Окончательно получим:

24. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике

1. Гипотеза Планка. 2. Определение фотоэффекта. 3. Законы фотоэффекта. 4. Уравнение Эйнштейна. 5. Применение фотоэффекта. 6. Распространенные ошибки.

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями — квантами (или фотонами). Энергия каждого фотона определяется формулой , где — постоянная Планка, равная , — частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого и 1887 г. немецким ученым Генрихом Герцем и изученного экспириментально русским ученым Александром Григорьевичем Столетовым.

Фотоэффект — это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится.

В результате исследований были установлены следующие эмпирические закономерности:

— количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

— максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

Во-первых, безынерционность фотоэффекта: процесс начинается сразу в момент начала освещения.

Во-вторых, наличие характерной для каждого металла минимальной частоты — красной границы фотоэффекта. Эта частота такова, что при фотоэффект не происходит при любой энергии света а если , то фотоэффект начинается даже при малой энергии.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергии . При вылете из металла энергия каждого электро на уменьшается на определенную величину, котору называют работой выхода ( ). Работа выхода это работа, которую необходимо затратить, чтобы удалить электрон из металла. Поэтому максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно,

.
Это уравнение носит название уравнения Эйнштейна.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока.

Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, и которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Открытие и исследование явления фотоэффекта привело к пересмотру учеными теоретических представлений о природе света.

Открытие и изучение явления фотоэффекта стало важным шагом в развитии представлений человека о природе света. Открытие данного явления началось с исследований Генриха Герца в 1887 году, который, работая с открытым резонатором, заметил, что прохождение искры между разрядниками существенно облегчается, если посветить на них ультрафиолетом. Фотоэффект был подвергнут систематическому экспериментальному исследованию выдающимся русским физиком Александром Григорьевичем Столетовым в 1888-1890 годах. Оказалось, что явление фотоэффекта основано на устранении отрицательного электричества с поверхности металла под воздействием ультрафиолетового света. Лишь немного позже выяснилось, что причина этого – вырывание электронов падающим на металл светом. В результате опытов было обнаружено, что кинетическая энергия фотоэлектронов изменяется только при изменении частоты света и не зависит от его интенсивности, а максимальная энергия фотоэлектронов возрастает пропорционально частоте света.
Подобные результаты нельзя было объяснить на основе общепринятых в то время законов электродинамики Максвелла, согласно которым свет представляет собой электромагнитную волну, непрерывно распределенную в пространстве. Истолковать с другой точки зрения явление фотоэффекта удалось только в 1905 году Альберту Эйнштейну, который развил идеи Макса Планка о прерывистом испускании света и вывел уравнение, раскрывающее закономерности фотоэффекта. С позиций квантовой физики Эйнштейна, свет поглощается порциями (квантами), которые имеют определенную энергию и получили название фотоны.

Суть уравнения в том, что фотон, сталкиваясь с веществом, расходует свою энергию на ионизацию атома вещества, на работу, совершаемую, чтобы «вырвать» электрон, а остаток энергии фотона переходит в кинетическую энергию электрона. Так ученые пришли к представлению о световых квантах, а также было дано новое определение света как потока частиц.
На первый взгляд может показаться, что это возврат к корпускулярной теории Ньютона. Однако нельзя забывать, что явления интерференции и дифракции определенно подтверждают наличие у света волновых свойств. Свет обладает своеобразной двойственностью свойств. При его распространении проявляются волновые свойства, а при взаимодействии с веществом (излучение и поглощение) – корпускулярные. Все это, конечно, довольно непривычно, и никто не может себе представить, как такое может происходить. Тем не менее, это факт. Ведь невозможно себе представить в полной мере все процессы, происходящие в микромире, так как они существенно отличаются от явлений, которые ученые на протяжении веков наблюдали в макромире, выявляя основные его закономерности.
Явление фотоэффекта широко применяется в технике. В частности, на нем основано действие фотоэлементов. С помощью фотоэлементов можно получать электричество из солнечного света, что особенно актуально в космосе, где отсутствуют другие источники энергии. Звук, записанный на кинопленке, также воспроизводится с помощью фотоэлементов. Кроме того, комбинируя фотоэлементы с реле, можно создавать различные «видящие» автоматы, которые могут автоматически открывать и закрывать дверь, сортировать предметы, включать и выключать освещение и т.п.

Фотоэффект

Подробности Категория: Фотометрия Опубликовано 15.02.2015 19:27 Просмотров: 8328

Испускание электронов веществом под действием света называется фотоэффектом.

Явление фотоэффекта демонстрирует простой опыт. Если отрицательно заряженную цинковую пластинку, соединённую с электроскопом (прибором, показывающим наличие электрического заряда), осветить светом ультрафиолетовой лампы, то очень быстро стрелка электроскопа перейдёт в нулевое состояние. Это говорит о том, что заряд исчез с поверхности пластины. Если такой же опыт проделать с положительно заряженной пластиной, стрелка электроскопа не отклонится вовсе. Этот опыт был впервые проведен в 1888 г. русским физиком Александром Григорьевичем Столетовым.

Александр Григорьевич Столетов

Что же происходит с веществом, когда на него падает свет?

Мы знаем, что свет — это электромагнитное излучение, поток квантовых частиц — фотонов. Когда электромагнитное излучение падает на металл, часть его отражается от поверхности, а часть поглощается поверхностным слоем. При поглощении фотон отдаёт электрону свою энергию. Получив эту энергию, электрон совершает работу и покидает поверхность металла. И пластинка, и электрон имеют отрицательный заряд, поэтому они отталкиваются, и электрон вылетает с поверхности.

Если же пластинка заряжена положительно, отрицательный электрон, выбитый с поверхности, снова притянется ею и не покинет её поверхность.

История открытия

Явление фотоэффекта было открыто в начале XIX века.

В 1839 г. французский учёный Александр Эдмонд Беккерель наблюдал фотогальванический эффект на границе металлического электрода и жидкости (электролите).

Александр Эдмонд Беккерель

В 1873 г. английский инженер-электрик Смит Уиллоуби обнаружил, что если воздействовать на селен электромагнитным излучением, то его электропроводность меняется.

Проводя опыты по исследованию электромагнитных волн в 1887 г., немецкий физик Генрих Герц заметил, что заряженный конденсатор разряжается гораздо быстрее, если осветить его пластины ультрафиолетовым излучением.

Генрих Герц

В 1888 г. германский физик-экспериментатор Вильгельм Гальвакс обнаружил, что при облучении металла коротковолновым ультрафиолетовым излучением металл теряет отрицательный заряд, то есть наблюдается явление фотоэффекта.

Огромный вклад в изучение фотоэффекта внёс русский физик Александр Григорьевич Столетов, проводивший детальные опыты по изучению фотоэффекта в 1888-1890 гг. Для этого он сконструировал специальный прибор, состоявший из двух параллельных дисков. Один из этих дисков, катод, сделанный из металла, находился внутри стеклянного корпуса. Другой диск, анод, представлял собой металлическую сетку, нанесённую на изготовленный из кварцевого стекла торец корпуса. Кварцевое стекло было выбрано учёным не случайно. Дело в том, что оно пропускает все виды световых волн, включая ультрафиолетовое излучение.

Обычное стекло ультрафиолетовое излучение задерживает. Из корпуса откачивался воздух. К каждому из дисков подводилось напряжение: к катоду отрицательное, к аноду положительное.

Опыт Столетова

Во время опытов учёный освещал катод через стекло красным, зелёным, синим и ультрафиолетовым светом. Величина тока регистрировалась гальванометром, в котором основным элементом было зеркало. В зависимости от величины фототока, зеркало отклонялось на разный угол. Наибольший эффект оказывали ультрафиолетовые лучи. И чем больше их было в спектре, тем сильнее оказывалось воздействие света.

Столетов обнаружил, что под действием света освобождаются только отрицательные заряды.

Катод изготавливали из различных металлов. Наиболее чувствительными к свету оказались такие металлы, как алюминий, медь, цинк, серебро, никель.

В 1898 г. было установлено, что освобождаемые при фотоэффекте отрицательные заряды являются электронами.

А в 1905 г. Альбер Эйнштейн объяснил явление фотоэффекта, как частный случай закона сохранения и превращения энергии.

Внешний фотоэффект

Внешний фотоэффект

Процесс выхода электронов из вещества под действием электромагнитного излучения называют внешним фотоэффектом, или фотоэлектронной эмиссией. Электроны, вылетающие с поверхности, называются фотоэлектронами. Соответственно, электрический ток, который образуется при их упорядоченном движении, называют фототоком.

Первый закон фотоэффекта

Сила фототока прямо пропорциональна плотности светового потока. Чем выше интенсивность излучения, тем большее количество электронов будет выбито из катода за 1 с.

Интенсивность светового потока пропорциональна числу фотонов. С увеличением числа фотонов увеличивается число электронов, покидающих поверхность металла и создающих фототок. Следовательно, увеличивается сила тока.

Второй закон фотоэффекта

Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

Энергия, которой обладает падающий на поверхность фотон, равна:

Е = h·ν,где ν — частота падающего фотона; h — постоянная Планка.

Получив энергию Е, электрон совершает работу выхода φ. Остальная часть энергии — это кинетическая энергия фотоэлектрона.

Из закона сохранения энергии вытекает равенство:

h·ν=φ + We, где We — максимальная кинетическая энергия электрона в момент вылета из металла.

h·ν=φ + mv2/2

Третий закон фотоэффекта

Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света νmin (или максимальная длина волны λmax), при которой ещё возможен фотоэффект, и если ν˂ νmin, то фотоэффект уже не происходит.

Фотоэффект проявляется, начиная с определённой частоты света νmin. При этой частоте, называемой «красной» границей фотоэффекта, начинается испускание электронов.

h· νmin = φ.

Если частота фотона ниже νmin, его энергии будет недостаточно, чтобы «выбить» электрон из металла.

Добавить комментарий

Закрыть меню