Формула симпсона для вычисления интеграла

Вывод формулы Симпсона

Из формулы
при n = 2 получаем

Т.к. x2-x0 = 2h, то имеем. (10)
Это формула Симпсона. Геометрически это означает, что кривую y=f(x) мы заменяем параболой y=L2(x), проходящей через три точки: M0(x0,y0), M1(x1,y1), M2(x2,y2).

Остаточный член формулы Симпсона равен

Предположим, что . Получим явное выражение для R. Фиксируя среднюю точку x1 и рассматривая R=R(h) как функцию h, будем иметь:
.
Отсюда дифференцируя последовательно три раза по h, получим
Окончательно имеем
,
где . Кроме того, имеем: R(0) = 0, R'(0)=0. R»(0)=0. Теперь, последовательно интегрируя R»'(h), используя теорему о среднем, получим
Таким образом, остаточный член квадратурной формулы Симпсона равен
, где .. (11)
Следовательно, формула Симпсона является точной для полиномов не только второй, но и третьей степени.
Получим теперь формулу Симпсона для произвольного интервала . Пусть n = 2m есть четное число узлов сетки ,
и yi=f(xi). Применяя формулу Симпсона (10) к каждому удвоенному промежутку длины 2h, будем иметь
Отсюда получаем общую формулу Симпсона
.(12)
Ошибка для каждого удвоенного промежутка дается формулой (11).
Т.к. число удвоенных промежутков равно m, то
С учетом непрерывности yIV на , можно найти точку ε, такую, что .
Поэтому будем иметь
. (13)
Если задана предельно допустимая погрешность ε, то, обозначив , получим для определения шага h
.

На практике вычисление R по формуле (13) бывает затруднительным. В этом случае можно поступить следующим образом. Вычисляем интеграл I(h)=I1 с шагом , I(2h)=I2 с шагом 2h и т.д. и вычисляем погрешность Δ:
Δ = |Ik-Ik-1| ≤ ε. (14)
Если неравенство (14) выполняется (ε — заданная погрешность), то за оценку интеграла берут Ik = I(k·h).
Замечание. Если сетка неравномерная, то формула Симпсона приобретает следующий вид (получить самостоятельно)
.
Пусть число узлов n = 2m (четное). Тогда
где hi=xi-xi-1.

Пример. С помощью формулы Симпсона вычислить интеграл , приняв n = 10.
Решение: Имеем 2m = 10. Отсюда . Результаты вычислений даны в таблице:

Интеграл, методы интегрирования

Метод парабол (Симпсона) — суть метода, формула, оценка погрешности, иллюстрация.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл .

Разобьем отрезок на n элементарных отрезков длины точками . Пусть точки являются серединами отрезков соответственно. В этом случае все «узлы» определяются из равенства .

Суть метода парабол.

На каждом интервале подынтегральная функция приближается квадратичной параболой , проходящей через точки . Отсюда и название метода — метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять , который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол.

Геометрически это выглядит так:

Графическая иллюстрация метода парабол (Симпсона).

Красной линией изображен график функции y=f(x), синей линией показано приближение графика функции y=f(x) квадратичными параболами на каждом элементарном отрезке разбиения.

Вывод формулы метода Симпсона (парабол).

В силу пятого свойства определенного интеграла имеем .

Для получения формулы метода парабол (Симпсона) нам осталось вычислить .

Пусть (мы всегда можем к этому прийти, проведя соответствующее геометрическое преобразования сдвига для любого i = 1, 2, …, n).

Сделаем чертеж.

Покажем, что через точки проходит только одна квадратичная парабола . Другими словами, докажем, что коэффициенты определяются единственным образом.

Так как — точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных . Определителем основной матрицы этой системы уравнений является определитель Вандермонда , а он отличен от нуля для несовпадающих точек . Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье решение систем линейных алгебраических уравнений), то есть, коэффициенты определяются единственным образом, и через точки проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла .

Очевидно:

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

Таким образом, можно получить формулу метода парабол:

Формула метода Симпсона (парабол) имеет вид
.

Оценка абсолютной погрешности метода Симпсона.

Абсолютная погрешность метода Симпсона оценивается как .

К началу страницы

Примеры приближенного вычисления определенных интегралов методом Симпсона (парабол).


Разберем применение метода Симпсона (парабол) при приближенном вычислении определенных интегралов.

Обычно встречается два типа заданий:

  • В первом случае требуется приближенно вычислить определенный интеграл по формуле Симпсона для заданного n.
  • Во втором случае просят найти приближенное значение определенного интеграла методом Симпсона (парабол) с точностью (к примеру, с точностью до одной тысячной).

Возникает логичный вопрос: «С какой степенью точности проводить промежуточные вычисления»?

Ответ прост — точность промежуточных вычислений должна быть достаточной. Промежуточные вычисления следует проводить с точностью на 3-4 порядка выше, чем порядок . Также точность промежуточных вычислений зависит от числа n — чем больше n, тем точнее следует проводить промежуточные вычисления.

Вычислите определенный интеграл методом Симпсона, разбив отрезок интегрирования на 5 частей.

Из условия мы знаем, что a = 0; b = 5; n = 5; .

Формула метода Симпсона (парабол) имеет вид . Для ее применения нам требуется вычислить шаг , определить узлы и вычислить соответствующие значения подынтегральной функции .

Промежуточные вычисления будем проводить с точностью до четырех знаков (округлять на пятом знаке).

Итак, вычисляем шаг .

Переходим к узлам и значениям функции в них:

Для наглядности и удобства результаты сведем в таблицу:

Подставляем полученные результаты в формулу метода парабол:

Мы специально взяли определенный интеграл, который можно вычислить по формуле Ньютона-Лейбница, чтобы сравнить результаты.

Результаты совпадают с точностью до сотых.

Вычислите определенный интеграл методом Симпсона с точностью до 0.001.

В нашем примере a = 0, .

Первым делом нам нужно определить n. Для этого обратимся к неравенству для оценки абсолютной погрешности метода Симпсона . Можно сказать, что если мы найдем n, для которого будет выполняться неравенство , то при использовании метода парабол для вычисления исходного определенного интеграла абсолютная погрешность не превысит 0.001. Последнее неравенство можно переписать в виде .

Выясним, какое наибольшее значение принимает модуль четвертой производной подынтегральной функции на отрезке интегрирования.

Область значений функции есть интервал , а отрезок интегрирования содержит точки экстремума, поэтому .

Подставляем найденное значение в неравенство и решим его:

Так как n является натуральным числом (это же количество отрезков, на которые разбивается отрезок интегрирования), то можно брать n = 5, 6, 7, … Чтобы не делать лишних вычислений, возьмем n = 5.

Теперь действуем как в предыдущем примере. В промежуточных вычислениях округление будем проводить на шестом порядке.

Вычисляем шаг .

Находим узлы и значения подынтегральной функции в них:

Результаты вычислений объединяем в таблицу:

Подставляем значения в формулу метода парабол:

Таким образом, по методу Симпсона получено приближенное значение определенного интеграла с точностью до 0.001.

Действительно, вычислив исходный интеграл по формуле Ньютона-Лейбница, получаем

Замечание.

Нахождение во многих случаях затруднительно. Можно обойтись без этого, применив альтернативный подход к использованию метода парабол. Его принцип описан в разделе метод трапеций, так что не будем повторяться.

К началу страницы

Какой же метод применять при численном интегрировании?

Точность метода Симпсона (парабол) выше точности метода прямоугольников и трапеций для заданного n (это видно из оценки абсолютной погрешности), так что его использование предпочтительнее.

Следует помнить о влиянии вычислительной погрешности на результат при больших n, что может отдалить приближенное значение от точного.

Некогда разбираться?

Закажите решение

К началу страницы

Добавить комментарий

Закрыть меню