Энергосбережение в мире

Содержание

1. Основные направления и способы энергосбережения

1.1. Экономия электрической энергии

1.1.1. Освещение

Наиболее распространенный способ экономии электроэнергии — оптимизация потребления электроэнергии на освещение. Ключевыми мероприятиями оптимизации потребления электроэнергии на освещение являются:

  • максимальное использование дневного света (повышение прозрачности и увеличение площади окон, дополнительные окна);
  • повышение отражающей способности (белые стены и потолок);
  • оптимальное размещение световых источников (местное освещение, направленное освещение);
  • использование осветительных приборов только по необходимости;
  • повышение светоотдачи существующих источников (замена люстр, плафонов, удаление грязи с плафонов, применение более эффективных отражателей);
  • замена ламп накаливания на энергосберегающие (люминесцентные, компактные люминесцентные, светодиодные);
  • применение устройств управления освещением (датчики движения и акустические датчики, датчики освещенности, таймеры, системы дистанционного управления);
  • внедрение автоматизированной система диспетчерского управления наружным освещением (АСДУ НО);
  • установка интеллектуальных распределённых систем управления освещением (минимизирующих затраты на электроэнергию для данного объекта).

1.1.2. Электропривод

Основными мероприятиями являются:

  • оптимальный подбор мощности электродвигателя;
  • использование частотно-регулируемого привода (ЧРП).

1.1.3. Электрообогрев и электроплиты

Основные мероприятия:

  • подбор оптимальной мощности электрообогревательных устройств;
  • оптимальное размещение устройств электрообогрева для снижения времени и требуемой мощности их использования;
  • повышение теплообмена, в том числе очистка от грязи поверхностей устройств электрообогрева и комфорок электроплит;
  • местный (локальный) обогрев, в т.ч. переносными масляными обогревателями, направленный обогрев рефлекторами;
  • использование масляных обогревателей с вентилятором для ускорения теплообмена в квартире;
  • использование устройств регулировки температуры, в т.ч. устройств автоматического включения и отключения, снижения мощности в зависимости от температуры, временных таймеров;
  • использование тепловых аккумуляторов;
  • замена электрообогрева на обогрев с использованием тепловых насосов;
  • замена электрообогрева на обогрев газом или подключение к централизованному отоплению, в случаях, когда такая замена выгодна с учетом требуемых инвестиций;
  • использование посуды с широким плоским дном.

1.1.4. Холодильные установки и кондиционеры

Для холодильных установок и бытовых холодильников основными способами снижения потребления электроэнергии являются:

  • оптимальный подбор мощности холодильной установки;
  • качественная изоляция корпуса (стенок), двери холодильной установки, холодильника, прозрачная крышка в холодильнике для продуктов, с качественной изоляцией;
  • приобретение современных энергосберегающих холодильников;
  • не допускать образования наледи, инея в холодильнике, вовремя размораживать;
  • не рекомендуется помещать в холодильную установку (холодильник) материалы и продукты, имеющие температуру выше температуры окружающей среды — их необходимо максимально охладить на воздухе;
  • проанализировать возможность отказа от холодильника;
  • качественный отвод тепла — не рекомендуется ставить бытовой холодильник к батарее или рядом с газовой плитой.

Для кондиционеров:

  • необходимо корректно подбирать мощность и место установки кондиционера, исходя из объема помещения, количества и расположения человек, присутствующих в помещении и др. характеристик;
  • при кондиционировании окна и двери должны быть закрыты — иначе кондиционер будет охлаждать улицу или коридор;
  • чистить фильтр, не допускать его сильного загрязнения;
  • необходимо настроить режим автоматического поддержания оптимальной температуры, не охлаждая, по возможности, комнату ниже 20-22 градусов;
  • обдумать степень необходимости установки и использования кондиционеров, в том числе и с архитектурной точки зрения (кондиционеры висящие на фасадах домов);
  • необходимо следить за тем, чтобы отключать кондиционер на ночь.

1.1.5. Потребление бытовых и прочих устройств

  • при выборе новой аудио, видео, компьютерной и др. техники отдавайте предпочтение, при прочих равных характеристиках, устройству с меньшим энергопотреблением, как в рабочем режиме, так и в дежурном режиме (большинство современных бытовых устройств потребляют электроэнергию даже в выключенном состоянии, т.к. не выключаются полностью, а переводятся в дежурный режим «stand-by/off»);
  • замените, по возможности, приборы, имеющие в своем составе трансформаторные блоки питания, на аналогичные с импульсными блоками питания;
  • пользуйтесь энергосберегающим «спящим» режимом, если он есть в приборе или устройстве;
  • не наливайте полный чайник, если вам нужен кипяток всего для одной чашки напитка;
  • не оставляйте без необходимости включенными в сеть зарядные устройства для мобильных приборов (очень актуально из-за возрастающего объема таких приборов);
  • старайтесь избегать использования удлинителей, а если это необходимо, то пользуйтесь качественными удлинителями с проводом большого сечения (при малом сечении провод начинает греться и электроэнергия уходит не на полезную работу электроприбора, а на нагрев провода удлинителя);

1.1.6. Снижение потерь в сети

  • использование энергосберегающих устройств;
  • увеличение значений номиналов проводников — проводов и кабелей
  • использование только проводов и кабелей с медной жилой
  • отслеживание несанкционированных подключений.

1.2. Экономия тепла

1.2.1. Снижение теплопотерь

  • использование теплосберегающих материалов при строительстве и модернизации зданий;
  • установка теплосберегающих оконных конструкций и дверей.

1.2.2. Повышение эффективности систем теплоснабжения

Мероприятия по повышению эффективности систем теплоснабжения предусматривают следующие направления оптимизации:

Со стороны источника:

  • Повышение эффективности источников теплоты за счет снижения затрат на собственные нужды;
  • Использование современного оборудования теплогенерирующего оборудования, такого как конденсационные котлы и тепловые насосы;
  • Использование узлов учета тепловой энергии;
  • Использование ко- и три- генерации.

Со стороны тепловых сетей:

  • Cнижение тепловых потерь в окружающую среду;
  • Оптимизация гидравлических режимов тепловых сетей;
  • Использование современных теплоизоляционных материалов;
  • Использование антивандальных покрытий при наружной прокладке тепловых сетей.

Со стороны потребителей:

  • Снижение тепловых потерь через наружные ограждающие конструкции;
  • Использование вторичных энергоресурсов;
  • Использование систем местного регулирования отопительных приборов для исключения перетопа;
  • Перевод зданий в режим нулевого потребления теплоты на отопление. При этом поддержание параметров воздуха в здании должно происходить за счет внутренних выделений теплоты и высоких параметров тепловой изоляции;
  • Использование узлов учета тепловой энергии.

В целом же меню «технических решений» по модернизации систем теплоснабжения очень обширно и далеко не ограничивается вышеизложенным списком. Ниже приведен пример перечня мер из «Программы модернизации систем теплоснабжения» комплексной программы развития и модернизации жилищно-коммунального комплекса целого региона, включающего 22 муниципальных образования; 126 городских и сельских поселений; более чем 200 отдельных систем теплоснабжения.

Основные мероприятия программы разбиты на пять укрупненных групп:

  • Проведение предпроектных обследований объектов теплоснабжения;
  • Строительство новых котельных;
  • Модернизация и реконструкция котельных и ЦТП;
  • Модернизация и строительство тепловых сетей;
  • Внедрение ресурсосберегающих технологий;
  • Для максимизации эффекта программы ее реализуют в комплексе с модернизацией системы теплозащиты жилых и общественных зданий, совершенствованием их инженерных систем, мерами по утеплению квартир, оснащению их приборами учета и эффективной водоразборной арматурой.

1.3. Экономия воды

  • установка приборов учёта потребления воды;
  • использование воды только когда это действительно необходимо;
  • установка сливных унитазных бачков, имеющих выбор интенсивности слива воды;
  • пользование водой под низким давлением.

1.4.

Экономия газа

  • подбор оптимальной мощности газового котла и насоса;
  • утепление помещений, оптимальный подбор эффективных радиаторов отопления в помещениях, где используется обогрев газовым котлом;
  • использование на газовых плитах посуды с широким плоским дном, закрывающейся крышкой, желательно прозрачной, подогрев в чайнике только необходимого количества воды;
  • переход, по возможности, на максимально широкое использование иных источников тепла, в т.ч. вторичных и на возобновляемых топливах (например, опилок, пеллетных котлов).

1.5. Экономия моторного топлива

  • использование газовых автомобилей;
  • плавные старты и торможения при движении на автомобиле;
  • покупка автомобилей с низким расходом топлива;
  • своевременная регулировка работы двигателя внутреннего сгорания.

2. Эффективность и экономический расчет

При реализации мероприятий энергосбережения и повышения энергоэффективности различают:

  • начальные инвестиции (или увеличение, прирост инвестиций из-за выбора более эффективного оборудования). Например, замена окон в существующем доме на пластиковые стеклопакеты — инвестиции в энергосбережение, а отказ от установки обычных светильников в пользу светодиодных в строящемся доме — увеличение инвестиций в энергосбережение (в доле превышения стоимости светодиодных светильников над обычными);
  • единовременные затраты на проведение энергоаудита (энергообследования);
  • единовременные затраты на приобретение и монтаж приборов учета и систем автоматического контроля, удаленного снятия показаний приборов учета;
  • текущие расходы на премирование (поощрение) ответственных за энергосбережение.

Как правило, эффекты от мероприятий энергосбережения рассчитывают:

  • как стоимость сэкономленных энергоресурсов или доля стоимости от потребляемых энергоресурсов, в т.ч. на единицу продукции;
  • как количество тонн условного топлива (т.у.т.) сэкономленных энергоресурсов или доля от величины потребляемых энергоресурсов в т.у.т.;
  • в натуральном выражении (кВт.ч., Гкал и т.д.);
  • как снижение доли энергоресурсов в ВВП в стоимостном выражении, либо в натуральных единицах (т.у.т., кВт.ч.) на 1 руб. ВВП

Эффекты от мероприятий энергосбережения можно разделить на несколько групп:

  • экономические эффекты у потребителей (снижение стоимости приобретаемых энергоресурсов);
  • эффекты повышения конкурентоспособности (снижение потребления энергоресурсов на единицу производимой продукции, энергоэффективность производимой продукции при ее использовании);
  • эффекты для электрической, тепловой, газовой сети (снижение пиковых нагрузок приводитк снижению риска аварий, повышению качества энергии, снижению потерь энергии, минимизации инвестиций в расширение сети, и, как следствие, снижению сетевых тарифов);
  • рыночные эффекты (например, снижение потребления электроэнергии, особенно в пиковые часы, приводит к снижению цен на энергию и мощность на оптовом рынке электроэнергии — особенно важным является снижение потребления электроэнергии населением на освещение в вечернем пике);
  • эффекты, связанные с особенностями регулирования (например, снижение потребления электроэнергии населением уменьшает нагрузку перекрестного субсидирования на промышленность — в настоящее время в России население платит за электроэнергию ниже ее себестоимости, дополнительная финансовая нагрузка включается в тарифы для промышленности);
  • экологические эффекты (например, снижение потребления электрической и тепловой энергии в зимнее время приводит к разгрузке наиболее дорогих и «грязных» электростанций и котельных, работающих на мазуте и низкокачественном угле.);
  • связанные эффекты (внимание к проблемам энергосбережения приводит к повышению озабоченности проблемами общей эффективности системы — технологии, организации, логистики на производстве, системы взаимоотношений, платежей и ответственности в ЖКХ, отношения к домашнему бюджету у граждан).

Обычно началу реализации мероприятий по энергосбережению предшествует проведение энергоаудита.

3. Законодательство и органы власти

Начало процессу формирования принципов и механизмов государственной политики в области энергосбережения РФ было положено выходом в свет постановления Правительства Российской Федерации «О неотложных мерах по энергосбережению в области добычи, производства, транспортировки и использования нефти, газа и нефтепродуктов» (№ 371 от 01.06.92 г.) и одобрением в этом же году Правительством РФ Концепции энергетической политики России.

В апреле 1996 года был принят Федеральный закон № 28-ФЗ «Об энергосбережении».

Новый Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23 ноября 2009 года определяет основные требования к энергетической эффективности предприятий, организаций, в т.ч. бюджетных и осуществляющих регулируемые виды деятельности, требования в отношении отдельных видов товаров и оборудования, зданий, в т.ч. многоквартирных домов, определяет условия энергосервисных контрактов, правила создания и функционирования саморегулируемых организаций энергоаудиторов, вводит штрафы за невыполнение отдельных требований и нормативов энергоэффективности.

Распоряжение Правительства РФ от 01.12.2009 N 1830-р «Об утверждении плана мероприятий по энергосбережению и повышению энергетической эффективности в Российской Федерации» определяет перечень мероприятий, нормативных актов, принимаемых министерствами и ведомствами, а также сроки принятия данных актов во исполнение ФЗ-261 «Об энергосбережении…»

Сегодня энергоэффективность и энергосбережение входят в 5 стратегических направлений приоритетного технологического развития, названных президентом РФ Дмитрием Медведевым на заседании Комиссии по модернизации и технологическому развитию экономики России, которая состоялась 18 июня 2009 года.

Эта тема была продолжена президентом на расширенном заседании президиума Госсовета 2 июля 2009 года в Архангельске. Среди основных проблем, обозначенных Медведевым, — низкая энергоэффективность во всех сферах, особенно в бюджетном секторе, ЖКХ, влияние цен энергоносителей на себестоимость продукции и ее конкурентоспособность.

Одна из важнейших стратегических задач страны, поставленной президентом (Указ № 889 от 4 июня 2008 года «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики»)— снижение энергоемкости отечественной экономики (ВВП) на 40% к 2020 году. Для ее реализации необходимо создание совершенной системы управления энергоэффективностью и энергосбережением. В связи с этим Министерством энергетики РФ было принято решение о преобразовании подведомственного ФГУ «Объединение» Росинформресурс» в Российское энергетическое агентство, с возложением на него соответствующих функций.

Приказ Министерства энергетики РФ от 19 апреля 2010 г. N 182 «Об утверждении требований к энергетическому паспорту, составленному по результатам обязательного энергетического обследования, и энергетическому паспорту, составленному на основании проектной документации, и правил направления копии энергетического паспорта, составленного по результатам обязательного энергетического обследования»

Маркировка энергоэффективности Европейского союза

К настоящему времени демонстрационное строительство в ряде стран показало, что можно строить здания с нулевым потреблением первичной энергии, так называемые net zero energy building.

Но какова цена вопроса: насколько вложенные средства в энергоэффективное строительство соотносятся со стоимостью энергии, экологическими составляющими и повышением комфорта среды обитания человека? По нашему мнению, стоимость средств, вложенных в энергосберегающие мероприятия, должна определяться по принципу предельной полезности. Ответственные за принятие решений, как правило это правительственные организации, постоянно повышают требования к энергосбережению. Однако закон убывающей предельной полезности утверждает, что в непрерывном процессе снижения энергопотребления предельная поверхность достигнутой выгоды уменьшается. Отсюда следует необходимость минимизации стоимости мероприятий, обеспечивающих максимальный эффект энергосбережения.

К сожалению, не удается обнаружить каких-то системных обоснований ни в европейской, ни в американской, ни в российской политике энергосберегающего домостроения.

Уже сорок лет строительный мир непрерывно обсуждает проблемы энергосбережения. Вдумайтесь – 40 лет! И открывается за далью даль: рождается все новое понимание этой проблемы. Становится очевидным, что до настоящего времени отсутствует общесогласованная методология строительства энергоэффективных экологически комфортных многоэтажных зданий различной технологической направленности. И ничего удивительного в этом незнании нет. Нужно вспомнить, что:

  • строительство современных многоэтажных зданий – молодая отрасль, которой около 70 лет;
  • многие технологические здания, такие как здания электронной промышленности, крупные медицинские центры и спортивные сооружения, возникли только 30–40 лет назад.

Европейский cовет в марте 2007 года принял решение о необходимости повышения энергетической эффективности зданий Eвропейского союза так, чтобы достичь снижения расхода энергии на 20 % к 2020 году. Далее Европейский парламент и Европейский совет 23 апреля 2009 года приняли решение о том, что к 2020 году 20 % потребляемой энергии должно быть обеспечено на основе использования возобновляемых источников энергии.

В 2007 году правительство США приняло решение об уменьшении потребления ископаемых энергетических ресурсов на 30 % к 2015 году. Американская система стандартизации ставит задачу строительства зданий с нулевым потреблением первичной энергии (таблица) в 2030 году.

Приказ Министерства регионального развития РФ от 28 мая 2010 года № 262 «О требованиях энергетической эффективности зданий, строений и сооружений» предписывает, чтобы с 2011 года нормируемый удельный расход энергии на отопление и вентиляцию за отопительный период был снижен на 15 % по сравнению с базовым уровнем, достигнутым на 1 января 2008 года, а с 2020 года – на 40 %, и в такой же степени – на горячее водоснабжение. Московское правительство в настоящее время принимает программу ведения работ по экономии энергии опережающими темпами по сравнению с требованиями приказа № 262 Министерства регионального развития РФ.

К сожалению, не удалось обнаружить каких-то экономических обоснований ни европейским, ни американским, ни российским требованиям. Известен основной принцип потребительского поведения: предельная полезность должна равняться цене производства.

Существует уверенность в том, что до настоящего времени специалисты не в полной мере осознали содержание и конечную цель проблемы энергосбережения, и, как результат, отсутствует общесогласованная мировая концепция развития энергоэффективного строительства. Имеют место локальные задачи с перспективой на 7–10 лет, которые не вытекают одна из другой.

Для подтверждения этого кратко рассмотрим эволюцию развития энергосбережения в строительной отрасли.

Впервые о проблеме энергосбережения заговорили в полный голос, начиная с 1974 года, после мирового энергетического кризиса. Тогда была сформулирована доктрина о том, что потребление энергоресурсов на теплоснабжение и климатизацию зданий должно оставаться на существующем в тот период уровне при возрастающем объеме строительства. Эта концепция была легко реализована уже в начале 1980-х годов, т. к. строительство представляло в то время удивительно расточительную сферу потребления энергоресурсов.

Более удивительным является то, что стратегическим направлением реализации этой концепции являлось не совершенствование инженерного оборудования зданий, а решение, лежащее на поверхности, – существенное повышение теплозащиты зданий, изменение конструкции окон и, как следствие, снижение воздухообмена и качества микроклимата.

Здание с нулевым потреблением первичной энергии
(net zero energy building) –

это здание, в котором суммарное потребление первичной энергии по годовому отчету равно нулю. Количество тепловой и электрической энергии, которое потребляется данным зданием в течение года, должно равняться общей энергии, которую это здание производит в течение года. Здание может быть подключено к тепло- и электросети, а может быть полностью независимым. Основная задача в течение года: если забирается энергия из сети, то ее нужно возвратить в сеть, выработав собственную энергию.

При этом учитывается вся энергия, включая потребление горячей воды и электрической энергии жильцами или арендаторами на бытовые и технологические нужды.

Следующая доктрина 1980–1990-х годов продолжала развивать теплозащиту зданий. Вместе с этим стали обращать внимание на возможности нетрадиционной энергетики, архитектуры, автоматизации инженерного оборудования. Начали цениться такие мероприятия по снижению энергопотребления, которые одновременно способствовали улучшению качества микроклимата в помещениях. Главным в этот период являлось строительство демонстрационных зданий с эффективным использованием энергии, так называемых зданий высоких технологий, интеллектуальных зданий, зданий биоклиматической архитектуры, пассивных зданий и к началу 2000 годов – устойчивых зданий (sustainable buildings).

Как правило, эти здания содержали совершенно оригинальные решения, которые были разработаны не в результате применения концепции, рассматривающей здание как единую энергетическую систему, а явились результатом таланта и амбиций архитекторов и инженеров. Энергопотребление в этих зданиях было в несколько раз меньше, чем в аналогичных зданиях, без ущерба для внутреннего микроклимата помещений. Но никто не ставил перед собой задачу разработать необходимую концепцию на основе достигнутых результатов.

Таблица
Сравнительная таблица требований стандарта ASHRAE 90.1 по снижению энергопотребления зданий
Энергопот-
ребление,
кВт•ч/м2
в год
Год
1999 2001 ‘03 ‘04 ‘07 ‘10 ‘13 ‘15 ‘20 ‘25 2030*
Без учета потребления электрической энергии пользователями оборудования** 167,3 163 138 128,3 96,7 85,3 72,7 56,9 44,2 0,0
С учетом потребления электрической энергии пользователями оборудования 223 154,8 132,7 113,8 75,9 56,9 0,0

* Потребление первичной энергии зданием по годовому отчету.

** Например, офисная техника, кухонные приборы и т. д.

Наконец, доктрина третьего этапа предполагает к 2030 году строительство зданий с нулевым потреблением первичной энергии. Эта доктрина опять же ориентирует на использование системы энергетически высокоэффективных взаимонезависимых решений. В этой доктрине решаются вопросы охраны окружающей среды – определяется переход на строительство так называемых «зеленых» зданий.

Требования директивы ЕС по энергетическим характеристикам зданий (EPBD) и стратегические планы других высокоразвитых стран, например США, по развитию энергосбережения в строительстве демонстрируют, что:

во-первых, правительства этих стран прежде всего применяют мероприятия по энергосбережению на своих федеральных зданиях, тем самым показывая хороший пример,

во-вторых, применяются для населения не методы наказания за расточительное отношение к энергии, а методы поощрения путем выделения дополнительных субсидий и,

в-третьих, в мире начинает доминировать понимание того обстоятельства, что главным источником энергосбережения являются существующие здания.

В этой связи представляет значительный интерес инагурационное послание г-на Gordon V. R. Holness, президента ASHRAE1, которое содержит стратегическую программу деятельности для США, определяющую политику в области энергосбережения, энергоэффективности, применения нетрадиционной энергетики и защиты окружающей среды от загрязнения.

Отметим, что стратегия энергосбережения сформулирована уже в названии послания – «Создать устойчивое будущее на основе переустройства нашего прошлого. Повышение энергетической эффективности существующих зданий – наша счастливая возможность обеспечить устойчивое будущее». Представляем краткое изложение главных положений данного документа:

  • Жилые и коммерческие здания потребляют более 40 % ископаемых энергетических ресурсов, более 70 % электрической энергии и более 50 % природного газа. В результате сжигания ископаемых энергетических ресурсов образуется эмиссия СО2, равная 1/3 общей эмиссии.
  • Сегодня США столкнулись с двумя кризисами: с одной стороны, это рост потребления энергии, с другой – результат потребления большого количества энергии является причиной загрязнения окружающей среды.
  • Огорчительным является не только тот факт, что растет общее потребление энергии, но и что значительно увеличиваются пиковые нагрузки.
  • Стратегическим направлением снижения потребления энергетических ресурсов является реконструкция существующих зданий с целью повышения их энергетической эффективности. Необходимо помнить, что новое строительство составляет всего 2 % и что от 75 до 80 % всех городских зданий будут существовать и эксплуатироваться в 2030 году.
  • Сегодня не только и не столько эра новых технологий в отоплении, вентиляции и кондиционировании. Более значительным для целей энергосбережения представляется настоящее развитие телекоммуникационных систем, цифровых электронных управляющих систем и т. д. Сегодня эра умных измерительно-управляющих систем и умного энергетического оборудования.
  • Последние 100 лет США активно развивали энергопотребляющие производительные технологии, которые в конечном счете повышали качество жизни людей. Благодаря этому США стали мировым экономическим и политическим лидером. Вместе с тем в стране была создана культура расточительного потребления и менталитет «разового пользования», что привело к неустойчивой экономике.
  • Сегодня имеют место огромные глобальные расхождения в экологии, культуре и климате в различных районах США. Нам следует учиться у других стран. Это должно стать нашей важнейшей задачей. Например, значительные расхождения между США и Европой: в США потребляется в три раза больше энергии на душу населения.
  • Европа уже давно обеспокоена необходимостью проектирования энергоэффективных зданий и их эксплуатации, изучила эти проблемы и знает, как добиться успеха. В Европе цены на энергию формируются как на ценный товар общественного потребления.
  • Главным партнером в нашей работе является Федеральное правительство, которое поставило экстремально агрессивную цель: обеспечить снижение потребления ископаемых энергетических ресурсов федеральными зданиями к 2015 году относительно 2003 года на 30 %.
  • Мы должны ответить на важный вопрос: почему энергетические показатели зданий ухудшаются на 30 % в течение 3–4-х лет эксплуатации – и уделить большое внимание важности процесса ввода в эксплуатацию и переналадки систем в период эксплуатации.
  • Нам посчастливилось, что энергетический кризис 1970-х годов продолжался недолго, но явился важной причиной для разработки ASHRAE первого национального стандарта по энергосбережению. Основные положения этого стандарта используются во всех наших национальных стандартах. Сегодня разработана система стандартов по энергосбережению, энергоэффективности, применению нетрадиционной энергетики и защите окружающей среды от загрязнения, в том числе: cтандарт ASHRAE 90.1 «Энергоэффективное проектирование многоэтажных зданий» (таблица), cтандарт ASHRAE 189.1 «Проектирование высокоэффективных многоэтажных “зеленых” зданий», серия «Руководство по энергоэффективному проектированию», стандарт 100 «Сохранение энергии в существующих зданиях».
  • За прошедший период ASHRAE разработала ряд важнейших стандартов, которые позволили создать «дорожную карту» по устойчивому развитию и перспективному плану до 2020 года. Эти стандарты относятся не только к энергетической эффективности зданий, но также включают в себя проблемы проектирования зданий с высокими энергетическими и экологическими показателями и даже к так называемым «зеленым» зданиям.
  • Конечной целью нашего стратегического плана «создать устойчивое будущее на основе переустройства нашего прошлого» является создание зданий с нулевым потреблением энергии и, соответственно, уменьшение нашего влияния на загрязнение окружающей среды.
  • Нашей философией должно быть: «Строить надо не только для сегодняшних пользователей, но и для будущих поколений».

1ASHRAE – Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха.

Доклад: Энергосбережение в современном мире

Реферат на тему:

«Энергосбережение в современном мире».

ученица 11 «М» класса

средней школы №126 г.

Минска

Баранова Виктория

2010 г.

В современном мире условием сохранения и развития цивилизации на Земле стало обеспечение человечества достаточным количеством топлива и энергии. Ограниченность запасов традиционно топливно-энергетических ресурсов заставила обратиться к энергосбережению как одному из основных элементов современной концепции развития мировой энергетики.

Не возобновляемые источники энергии: торфа, угля, нефти, природного газа.

Возобновляемые источники энергии: твердая биомасса и животные продукты, промышленные отходы, гидроэнергия, геотермальная энергия, солнечная энергия, энергия ветра, энергия приливов морских волн и океана.

Энергосбережение

Энергосбережение означает рациональное энергоиспользование во всех звеньях преобразования энергии – от добычи первичных энергоресурсов до потребления всех видов энергии конечными пользователями.

Мероприятия по энергосбережению могут быть разными. Один из самых действенных способов увеличения эффективности использования энергии – применение современных технологий энергосбережения.

Технологии энергосбережения не только дают значительное уменьшение расходов на энергетические затраты, но и имеют очевидные экологические плюсы.

Основные направления эффективного энергопотребления

Энергосбережение на предприятии: технологии и новые возможности.

К сожалению, энергосбережение на предприятиях, как правило, оставляет желать лучшего. На большинстве фабрик и заводов установлены высоко мощные электродвигатели, расходующие до 60% больше энергии, чем это необходимо. Для оптимизации процесса применяются электроприводы со встроенными функциями снижения энергопотребления. Благодаря гибкому изменению частоты их вращения в зависимости от нагрузки энергосбережение может составить 30-50%.

Сокращение тепловых потерь и энергосбережение в зданиях разного назначения.

Более 30% всех энергоресурсов тратится на отопление жилых, офисных и производственных зданий. Поэтому технологии энергосбережения в зданиях разного назначения неэффективны без снижения непродуктивных потерь тепла.

Важнейшим мероприятием по энергосбережению в зданиях станут также установка батарей отопления с автоматической регуляцией. Применение систем вентиляции, имеющих функцию повторного использования тепловой энергии, позволят сберечь еще больше энергии.

В последние годы появилась новые технологии энергосбережения – пассивные дома, по сути обогреваемые за счет тепла, выделяемого людьми и электроприборами. По экономичности такие жилища в 10 раз превосходят типовые «хрущевки». При массовом строительстве пассивных домов потенциал энергосбережения составит не меньше 30-40% энергопотребления страны. Теперь рассмотрим лестницы, коридоры, склады и другие помещения такого же типа. Энергосбережение достигается за счет не постоянного использования освещения. Лестницей в многоэтажном доме пользуются крайне редко. В таких условиях лучше использовать светильники с датчиками движения, которые последовательно включают лампы по мере движения человека или светильники, которые включаются по звуку.

Энергосбережение в школе: долгосрочный вклад в будущее.

Успешность мероприятий по энергосбережению невозможна без массового распространения информации об экономии энергии среди широких масс населения. В настоящее время в нашей стране запускаются кампании по внедрению технологий энергосбережения в зданиях разного назначения: не только на предприятиях, но и, например, в школах. Энергосбережение в школе имеет огромный потенциал. С детства, привыкнув к бережному отношению к электроэнергии, в будущем нынешние школьники смогут совершить прорыв в энергосбережении во всей стране. В современных школах активно внедряются экологические программы, выпускаются пособия, проводится обучение, внеклассные занятия, конкурсы на лучшие проекты на тему «Энергосбережение» и т.д. Все эти меры позволяют нам почувствовать уверенность в благополучном экологическом будущем нашей планеты.

Современные технологии энергосбережения

Роторно-пульсационные установки для отопления и горячего водоснабжения.

Такие генераторы позволяют нагревать воду, инициируя в ней за счет высоких скоростей вращения ротора (5 000 об/мин.) физико-химические процессы, сопровождающиеся большим выделением тепловой энергии. Ротор аппарата приводится во вращение при помощи электродвигателя. Данные тепловые генераторы обладают высокой эффективностью, коэффициент преобразования энергии составляет около 100%. Причем, чем выше мощность установки, тем выше ее эффективность за счет увеличения удельной поверхности ротор-статор.

Min мощность теплового генератора — 5 кВт,

Max — ограничена только доступной мощностью электродвигателя и выделенной мощностью у потребителя.

Такие тепловые генераторы используются для горячего водоснабжения, для автономного отопления зданий и сооружений.

Преимущества роторно-пульсационного нагревателя:

Относительная дешевизна по сравнению с котельными установками.

Малые габариты установки и простота монтажа к действующей системе отопления.

Автоматическое управление позволяет оборудованию работать без присутствия персонала.

Не требуется специальная водоподготовка.

В сравнении с газовой котельной, не требуется выделения лимитов на газ.

Отсутствуют выбросы продуктов горения, то есть, генератор является экологически чистым.

Значительная экономия средств и быстрый срок окупаемости, в случае замены центрального отопления (от теплосетей) и горячего водоснабжения на гидротеплогенератор.

Принцип работы роторно-пульсационного генератора.

Принцип работы роторно-пульсационного генератора заключается в прокачке жидкости через систему ротор-статор, где линейные скорости потока жидкости достигают 50-100 м/сек и, за счет больших растягивающих напряжений, приводят к возникновению в жидкости кавитационных процессов, обеспечивающих ее разогрев.

Суть процессов роторно-пульсационного генератора.

Суть процессов состоит в возникновении и схлопывании пузырьков, содержащих пар или газ при адиабатическом нагреве вплоть до 10000 С. Происходит генерация тепла самой жидкостью, без теплообменных поверхностей обеспечивает очень эффективный процесс разогрева. КПД гидротеплогенератора (отношение полученной тепловой энергии к затраченной электрической энергии) близок к единице.

Добавить комментарий

Закрыть меню