Эллипс гипербола парабола

Определение гиперболы и вывод ее канонического уравнения.

Гиперболой называется множество всех точек плоскости, для каждой из которых модуль разности расстояний до двух данных точек (фокусов) той же плоскости есть величина постоянная.

Обозначим эту постоянную через 2а, расстояние между фокуса­ми F1и F2 — через 2с (фокусное расстояние). Пусть М — произвольная точка гиперболы, тогда

(34)

Выберем декартову прямо­угольную систему координат так, что­бы ось Ох проходила

через фокусы, а ее положительное направление совпа­дало с направлением отрезка ,

начало поместим в середине этого отрезка.

При таком выборе системы координат фокусы будут иметь коор­динаты: . Обозначив текущие координаты точки М через х и у, получим

Уравнение (34) принимает вид

(35)

Уравнение (35) является уравнением гиперболы, так как ему удовлетворяют координаты любой точки гиперболы и только они. Уп­ростим его (тем же способом, что и уравнение (28)), получим

(36)

где (37)

Уравнение (36) называется каноническим уравнением гиперболы. Гипербола (36) имеет две асимпто­ты:

(38)

Центр симметрии гиперболы называется ее центром. Оси симметрии гиперболы называются просто ее осями, одна ось пере­секает гиперболу в двух точках, называемых вершинами эта ось называется действительной осью гиперболы, другая ось — мнимой осью, она не имеет общих точек с гиперболой. Длины отрезков также называются осями.

Величины а и b называются полуосями гиперболы. Если а = b, гипер­бола называется равносторонней, ее уравнение

(39)

Уравнение

(40)

определяет гиперболу с действительной осью Оу.

Эксцентриситет гиперболы, фокальные радиусы, директрисы гиперболы.

Эксцентриситетом гиперболы называется отношение ее фо­кусного расстояния к расстоянию между ее вершинами. Если действи­тельной осью является ось Ох, то по определению

(41)

Так как для гиперболы с > а, то е >1.

Фокальными радиусами точки М гиперболы называются отрез­ки, соединяющие эту точку с фокусами данной гиперболы. Их длины выражаются формулами:

для правой ветви (42)

для левой ветви (43)

Директрисами гиперболы называются прямые, перпен­дикулярные действительной оси гиперболы и расположенные симмет­рично относительно центра на расстоянии от него (а — действи­тельная полуось, — эксцентриситет гиперболы). Если гипербола зада­на каноническим уравнением (36), то в данной системе координат ее директрисы определяются уравнениями


Парабола.

Параболой называется множество всех точек плоскости, равно­удаленных от данной точки (фокуса) и данной прямой (директрисы).

Пусть р — расстояние от фокуса F до директрисы . Ось Ох де­картовой прямоугольной системы координат выберем так, чтобы она проходила через F перпендикулярно , ее положительное направление — от к F (рис.), начало координат поместим в середине отрезка ВF, где В — точка пересечения Ох и .

В этой системе координат точки F и В имеют следующие координаты: F (р/2; 0), В(-р/2; 0)

Возьмем произвольную точку М(х, у) параболы, обозначим че­рез r расстояние до фокуса, через d. — расстояние до директрисы ( ), по определению параболы r=d. Поскольку

Линии второго порядка на плоскости.

Лекция 4.

Эллипс, окружность. Гипербола. Парабола.

Линии, уравнения которых в прямоугольной систем координат являются уравнениями второй степени, называются линиями второго порядка.К важнейшим линиям второго порядка относятся эллипс, окружность, гипербола и парабола.

Определение 4.1. Эллипсомназывается множество всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Пусть F1(-c,0) и F2(c,0) ─ фокусы. Тогда F1F2 = 2c ─ фокусное расстояние(рис.4.1). Постоянную величину, о которой идёт речь в определении эллипса, обозначим 2a.

Пусть M(x,y) ─ произвольная точка эллипса. Тогда по определению F1M + F2M = 2a > 2c, откуда a > c.

Так как F1M = , F2M = , то имеем уравнение + = 2a.

Преобразуем это уравнение:

()2 = (2a − )2 ,

(x2 + 2cx + c2) + y2 = 4a2 – 4a+ (x2 –­ 2cx + c2) + y2,

a= a2 – cx.

Возводя в квадрат последнее уравнение, имеем

a2(x2 – 2cx + c2 + y2) = a4 – 2cxa2 + c2x2,

(a2 – c2)x2 + a2y2 = a2(a2 – c2).

Так как a > c, то a2 – c2 > 0 и можем обозначить b2 = a2 – c2. Тогда

b2x2 + a2y2 = a2b2,

= 1 (1)

Таким образом, координаты любой точки эллипса удовлетворяют уравнению (1).

Покажем обратное: если координаты точки M(x,y) удовлетворяют уравнению (1), то точка M лежит на эллипсе.

Из (1) найдём y2 : y2 = b2(1 — ).

Тогда F1M = = = == = = ││

Т.к. c < a и из (1) ≤ 1, т.е. x2 ≤ a2 , │x│ ≤ a, то .

Следовательно,

││= .

Аналогично можно вычислить

F2M = .

Теперь

F1M + F2M = .

Из уравнения (1) : b2 > 0 Þ a2 – c2 > 0, т.е. a > c, откуда 2a > 2c. Значит, точка M лежит на эллипсе.

Уравнение (1) называется каноническим уравнением эллипса.Изображён эллипс с уравнением (1) на рис 4.2.

Точки пересечения эллипса с осями координат называются вершинами эллипса.Оси симметрии эллипса (оси Ox и Oy) называют осями эллипса. Точка пересечения осей ─ центр эллипса. Осяминазывают также отрезки A1A, B1B. Отрезки OA, OB и их длины называют полуосями. В нашем случае a > b, поэтому а называют большой полуосью,b ─ малой полуосью. Эксцентриситетом эллипсаназывается отношение фокусного расстояния к длине большой оси, т.е.

ε = .

Так как 0 c < a, то 0 ε < 1. Фокальными радиусами точки Mназывают отрезки F1M и F2M. Их длины r1 и r2 вычисляют по формулам


r1 = a + εx,

r2 = a – εx.

Уравнение (1) можно рассматривать и в случае, когда b > a, оно определяет эллипс с большой полуосью OB = b, фокусы такого эллипса лежат на оси Oy, причём a2 = b2 – c2.

В случае, когда a = b, уравнение (1) принимает вид

  • Гипербола представляет собой плоскую кривую, для каждой точки которой модуль разности расстояний до двух заданных точек (фокусов гиперболы) является постоянным. Расстояние между фокусами гиперболы называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром. У гиперболы имеются две оси симметрии: фокальная или действительная ось, проходящая через фокусы, и перпендикулярная ей мнимая ось, проходящая через центр.

    Действительная ось пересекает ветви гиперболы в точках, которые называются вершинами. Отрезок, соединяющий центр гиперболы с вершиной, называется действительной полуосью и обозначается через \(a\). Мнимая полуось обозначается символом \(b\). Каноническое уравнение гиперболы записывается в виде
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize — \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1\).

  • Модуль разности расстояний от любой точки гиперболы до ее фокусов является постоянной величиной:
    \(\left| {{r_1} — {r_2}} \right| = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left( {x,y} \right)\) гиперболы до фокусов \({F_1}\) и \({F_2}\), \(a\) − действительная полуось гиперболы.

  • Уравнения асимптот гиперболы
    \(y = \pm \large\frac{b}{a}\normalsize x\)

  • Соотношение между полуосями гиперболы и фокусным расстоянием
    \({c^2} = {a^2} + {b^2}\),
    где \(c\) − половина фокусного расстояния, \(a\) − действительная полуось гиперболы, \(b\) − мнимая полуось.

  • Эксцентриситет гиперболы
    \(e = \large\frac{c}{a}\normalsize > 1\)

  • Уравнения директрис гиперболы
    Директрисой гиперболы называется прямая, перпендикулярная ее действительной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. У гиперболы − две директрисы, отстоящие по разные стороны от центра. Уравнения директрис имеют вид
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize\).

  • Уравнение правой ветви гиперболы в параметрической форме
    \( \left\{ \begin{aligned} x &= a \cosh t \\ y &= b \sinh t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси гиперболы, \(t\) − параметр.

  • Общее уравнение гиперболы
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \(B^2 — 4AC > 0\).

  • Общее уравнение гиперболы, полуоси которой параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC

  • Равнобочная гипербола
    Гипербола называется равнобочной, если ее полуоси одинаковы: \(a = b\). У такой гиперболы асимптоты взаимно перпендикулярны. Если асимптотами являются горизонтальная и вертикальная координатные оси (соответственно, \(y = 0\) и \(x = 0\)), то уравнение равнобочной гиперболы имеет вид
    \(xy = \large\frac{{{e^2}}}{4}\normalsize\) или \(y = \large\frac{k}{x}\normalsize\), где \(k = \large\frac{e^2}{4}\normalsize .\)

  • Параболой называется плоская кривая, в каждой точки которой выполняется следующее свойство: расстояние до заданной точки (фокуса параболы) равно расстоянию до заданной прямой (директрисы параболы). Расстояние от фокуса до директрисы называется параметром параболы и обозначается через \(p\). Парабола имеет единственную ось симметрии, которая пересекает параболу в ее вершине. Каноническое уравнение параболы имеет вид
    \(y = 2px\).

    Уравнение директрисы
    \(x = — \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F \left( {\large\frac{p}{2}\normalsize, 0} \right)\)

    Координаты вершины
    \(M \left( {0,0} \right)\)

  • Общее уравнение параболы
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \(B^2 — 4AC = 0\).

  • Уравнение параболы, ось симметрии которой параллельна оси \(Oy\)
    \(A{x^2} + Dx + Ey + F = 0\;\left( {A \ne 0, E \ne 0} \right) \),
    или в эквивалентной форме
    \(y = a{x^2} + bx + c,\;\;p = \large\frac{1}{2a}\normalsize\)

    Уравнение директрисы
    \(y = {y_0} — \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F\left( {{x_0},{y_0} + \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \({x_0} = — \large\frac{b}{{2a}}\normalsize,\;\;{y_0} = ax_0^2 + b{x_0} + c = \large\frac{{4ac — {b^2}}}{{4a}}\normalsize\)

  • Уравнение параболы с вершиной в начале координат и осью симметрии, параллельной оси \(Oy\)
    \(y = a{x^2},\;\;p = \large\frac{1}{{2a}}\normalsize\)

    Уравнение директрисы
    \(y = — \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F \left( {0, \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \(M \left( {0,0} \right)\)

  • Добавить комментарий

    Закрыть меню