Для чего нужны суперкомпьютеры?

ВВЕДЕНИЕ

Принято считать, что супер-ЭВМ, они же – «суперкомпьютеры», — это компьютеры, имеющие наивысшую продуктивность, и которые значительно мощнее любых аналогов доступных на компьютерном рынке. В шутку, некоторые инженеры нарекают суперкомпьютером любую ЭВМ, масса которой превышает полтонны. Но это не так: ведь, к примеру, такие компьютеры, как Эниак или Марк-1 – также массивны, но префикс «супер – » так и не получили. Первое использование термина «суперкомпьютер» относят ко второй половине XX-го века. Как такового точное определение понятия «супермашины» не найдено и, без всякого сомнения, не будет.

Это связано с непрерывным совершенствованием компьютерной промышленности, которое происходит со стремительной быстротой. Те системы, которые имеют сейчас пометку «мощнейшие», спустя пару лет могут стать «медлительными».

Одно из самых главных преимуществ суперкомпьютеров состоит в том, чтобы производить огромное количество достаточно сложных вычислительных операция за непродолжительный временной промежуток. Их производительность измеряется такой единицей, как флопс(flops), показывающей, сколько операций в секунду выполняет данная система с плавающей запятой. Для более точного понимания мощности и уровня производительности супер-ЭВМ приводят такой пример: суперкомпьютер Intel ASCI RED, созданный по программе Правительства США по развитию суперкомпьютерных технологий, работает с общей производительностью приблизительно 3,15 миллиарда операций в секунду. Чтобы человек смог выполнить такие подсчеты посредством использования самого обычного калькулятора, ему пришлось бы потратить много более полста тысяч лет! А для этого электронного вычислительного «монстра» требуется всего 1 секунда. Но не стоит забывать тот факт, что именуемый так компьютер на сегодня – уже далеко не самый мощный аппарат.

Основной стимул создания суперкомпьютеров – потребность решения сложных вычислительных задач. В свою очередь, исследования и разработки по суперсистемам стимулируют целый комплекс различных исследований. Прежде всего, это касается архитектуры, интегральных схем и средств их соединений, эффективных систем отвода тепла. Не менее важны и результаты распараллеливания при выполнении отдельных операций и участков программ на аппаратном уровне, методам построения параллельных алгоритмов, языков и программных систем для эффективного решения больших задач.

Исходя из всего вышесказанного, для исследований в сфере супер-ЭВМ необходимы значительные средства. Поэтому производство таких машин не бывает массовым, поскольку круг заказчиков весьма узок. Вследствие этого в данной сфере достаточно высокий уровень риска. В качестве страховки все фирмы, специализирующиеся в этом секторе, создают комплексы с низкой производительностью, но значительно более дешевые и удобные в эксплуатации, которые широко используются, прежде всего, в качестве суперсерверов мощных сетей.

Зачем нужны суперкомпьютеры. Российский производитель суперкомпьютеров – компания «Т-Платформы»

Это первый материал из цикла, посвященного суперкомпьютерам и работе на этом рынке российской компании «Т-Платформы». Материалы созданы на основании интервью с Александром Голубом, директором департамента разработки «Т-Платформ», и Сергеем Клейменовым, главным специалистом по интеграции и внедрению, который занимал пост технического руководителя (так называемый «technical lead») проекта по строительству суперкомьютера JURECA.

1. Российский производитель суперкомпьютеров — компания «Т-Платформы»
2. Как построить суперкомпьютер? Гонки технологий, сроки и скорость внедрения как решающий фактор
3. Как построить суперкомпьютер? Свои технологии или покупные, собственная разработка плат как ключ к успеху, интеграция против разъемов и сложности производства в России
4. «Т-Платформы» — крупнейшие проекты недавнего времени, другие направления деятельности
5. Суперкомпьютер «Т-Платформ» в немецком суперкомпьютерном центре Юлиха
6. Технические особенности суперкомпьютера JURECA производства «Т-Платформ»
7. Программная часть суперкомпьютера JURECA, управление ресурсами, обслуживание и основные результаты проекта для «Т-Платформ».

Основным направлением деятельности компании «Т-Платформы» является создание суперкомпьютеров как в России, так и за рубежом, хотя сейчас компания активно работает и на других направлениях, в первую очередь это создание и продажа серверов общего назначения, созданных на базе суперкомпьютерных технологий.

Одна из основных особенностей компании состоит в том, что в «Т-Платформах» самостоятельно разрабатывают дизайн шасси, платформ и даже материнских плат и плат расширения (что требует хорошего знания элементной базы и взаимодействия с производителями чипов), а также самостоятельно пишут все управляющее ПО, начиная от микропрограммы для контроллера управления серверной платой (BMC), BIOS-а, плат управления шасси и заканчивая программами для управления ресурсами суперкомпьютеров.

Что такое суперкомпьютеры и зачем они нужны?

Суперкомпьютер представляет собой систему с чрезвычайно высокой вычислительной производительностью, основная сфера применения этих систем — математическое моделирование физических, биологических и любых других процессов. Переход на использование суперкомпьютеров для задач моделирования — это выход на новый уровень по скорости и эффективности разработки, поэтому количество научных коллективов и частных компаний, использующих в своей работе суперкомпьютеры, постоянно растет.

Моделирование с помощью суперкомпьютеров применяется в самых разных проектах, как чисто научных (моделирование природных процессов, исследования космоса, моделирование ядерных взрывов, исследования в области биологии, включая моделирование работы органов человека, фармакологии, и во многих других областях), так и вполне прикладных — например, обкатка новой модели двигателя для автомобиля, моделирование процессов деформации, температурных режимов и пр. Также суперкомпьютеры значительно ускоряют решение задач численными методами.

Время — деньги, или почему ускорение зачастую важнее, чем удешевление

В современном мире время играет не меньшую, а иногда и большую роль, чем деньги. Иногда время вообще становится единственным решающим фактором: если продукт или технология не появились на рынке в нужный срок, то они уже никому не нужны, даже если по остальным направлениям все выглядит неплохо. Математическое моделирование и численные методы стали одним из способов радикально сократить затраты времени и денег на разработку новых технологий и продуктов.

Традиционная физическая модель для продува. Источник

Например, одним из самых сложных и дорогостоящих процессов при создании нового самолета является разработка оптимального планера. Раньше для этого приходилось вручную строить десятки моделей, а потом продувать их в аэродинамической трубе. Компьютерное моделирование позволяет сравнить разные варианты, найти оптимальный и «довести» его, не прибегая постройке моделей и натурным испытаниям. Еще больше выгод компьютерное моделирование предлагает в ситуациях, когда есть несколько вариантов решения и заранее непонятно, какой из них лучше.

Компьютерная модель самолета для анализа внешних воздействий. Источник

К компьютерной модели можно всегда вернуться, чтобы оценить, как она будет вести себя в других условиях эксплуатации. Например, посмотреть, как ракетный двигатель будет работать на другом виде топлива — без создания дорогой и сложной натурной модели.

Пример ПО для расчета аэродинамики. Источник

Наконец, компьютерное моделирование не просто ускоряет разработку отдельного проекта — оно позволяет накапливать новые знания, уточнять параметры взаимодействия моделей и окружающей среды, создавая задел на будущее. Будущие модели будут точнее и лучше, а реализация проектов — быстрее и дешевле.

На сегодня компьютерное моделирование успешно применяется в самых разных отраслях экономики. Например, в геологии суперкомпьютер с помощью специализированного ПО для геологических расчетов позволяет с достаточно высокой точностью оценивать объемы месторождений, планирование добычи и пр. Другой вопрос, что математическое моделирование — это инструмент, а направление и эффективность его использования зависит от тех, кто этим инструментом пользуется.

Например, есть общеизвестный пример: использование компьютерного моделирования позволило автопроизводителям более точно рассчитывать износ узлов и агрегатов автомобиля, точно устанавливая срок его службы и вынуждая потребителей покупать новую модель.

Кто использует моделирование с помощью суперкомпьютеров

Компьютерное моделирование широко применяется подавляющим большинством компаний, занимающихся разработкой новых технологий и продуктов, а количество специализированного ПО для моделирования на все случаи жизни достаточно велико. Правда, даже сегодня многие компании не осознают до конца преимуществ высокопроизводительных систем и не исследуют возможности их использования для своих задач. Много где моделирование до сих пор осуществляется на рабочих станциях, из-за чего выполнение проектов занимает довольно много времени.

ПО для моделирования ракет. Источник

Сегодня ресурсы суперкомпьютеров в значительной степени используются для решения научных задач, а главным заказчиком является научное сообщество. Суперкомпьютеры обслуживают научные расчеты в огромном количестве самых разных областей науки, таких как биотехнологии (например, это одно из популярных направлений для суперкомпьютеров в МГУ), фармацевтика, фармакология, аэродинамика и авионика, гидродинамика и кораблестроение, двигателестроение, ракетные двигатели и ракетные технологии, энергетика, добыча полезных ископаемых и огромное количество других направлений.

ПО для работы с генетической информацией ДНК. Источник

Сверхсовременный компьютер «Ломоносов-2», построенный компанией «Т-Платформы» для МГУ, постоянно занят, как и ранее построенный, но остающийся в строю «Ломоносов» — к ним стоит внушительная очередь на расчеты из научных проектов. Примерно та же картина и для других суперкомпьютеров — как у нас, так и в западных странах.

Впрочем, преимущества суперкомпьютера раскрываются в решении крупных прикладных и научных задач. Для распространенных прикладных задач существует специализированное ПО: пакеты ANSYS, Solidworks (эти компании имеют большое количество продуктов под решение разных задач), Abaqus, Deform 3D, Flow Vision, Open FOAM, Autodesk Simulation и многие другие. Разные продукты оптимизированы под решение разных типов задач, некоторые производители поддерживают широкую линейку продуктов, некоторые сосредотачиваются на определенных направлениях.

А вот при решении задач в рамках научных исследований ПО для расчетов часто приходится разрабатывать самостоятельно.

Пример расчета аэродинамики в ПО ANSYS. Источник

Также нужно понимать, что суперкомпьютер — очень дорогая игрушка, и следует трезво оценивать экономическую эффективность его использования. Строить свой собственный суперкомпьютер имеет смысл, если у компании постоянно есть задачи и проекты, требующие значительных вычислительных ресурсов. Например, Росгидромету для моделирования погодных условий постоянно требуются вычислительные ресурсы, и в этом случае вполне логично иметь собственное решение. Если же серьезные вычислительные ресурсы нужны время от времени, то более выгодно брать эти ресурсы в аренду.

Рынок суперкомпьютеров — уникальный рынок со своими технологиями, продуктами и решениями

Рынок суперкомпьютеров заметно отличается от рынка серверов общего назначения: здесь используются свои уникальные технологии, свои технические решения, свои серверные платформы и конфигурации, свои виды интерконнекта (связь между серверами) и т.д.

Средний размер системы на этом рынке относительно небольшой: проект в 1000 блейд-систем считается крупным. Но при этом каждый проект имеет свои уникальные особенности, потому что практически везде заказчик выдвигает особые требования: специфические конфигурации, особые виды интерконнекта, своя конструкция стоек, своя конфигурация СХД, особенности помещения и т.д. В результате, каждый проект требует отдельной работы архитекторов и инженеров кластерных решений, которые создают проект с учетом специфики заказчика.

Суперкомпьютер JURECA — один из самых мощных проектов «Т-Платформ».

Кроме того, проекты часто требуют решения различных инженерных задач. В первую очередь это создание инженерных систем для обеспечения работы суперкомпьютера, в первую очередь надежного энергоснабжения и охлаждения. Очень часто требуется адаптировать эти системы (а иногда и вычислительные системы) под особенности помещения.

В «Т-Платформах» есть специалисты, работающие с инженерными системами. Впрочем, они относятся к проектному отделу, а Александр Голуб руководит подразделением разработки. По его словам, он отвечает за создание «кирпичей, из которых строят суперкомпьютеры» — т.е. за разработку и запуск в производство вычислительных серверов и других аппаратных компонентов — плат расширения и пр.

Впрочем, уникальные особенности проекта редко составляют более 15% от общего объема работ. Выбор на рынке все же ограничен, поэтому с подавляющим большинством технологий, продуктов и решений, присутствующих на рынке, специалисты компании уже знакомы, так как сталкивались раньше. Хотя изредка, когда речь идет о совсем экзотических или ультрасовременных технологиях, приходится брать их отдельно и устраивать дополнительное тестирование на своих мощностях, чтобы понять, что это и как оно работает.

На сегодня компанией «Т-Платформы» накоплен огромный объем знаний и опыта, которые позволяют ей оставаться одним из лидеров рынка суперкомпьютеров.

Поиск Лекций

СУПЕР ЭВМ.:НАЗНАЧЕНИЕ ,ПРИНИПЫ ОБРАБОТКИ ИНФОРМАЦИИ

Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Некоторые инженеры, шутливо, называют суперкомпьютером любой компьютер масса которого превосходит одну тонну. И хотя большинство современных супер-ЭВМ действительно весят более тонны. Не всякую ЭВМ можно назвать «супер», даже если она весит более тонны. Марк-1, Эниак – тоже тяжеловесы, но суперкомпьютерами не считаются даже для своего времени.
Скорость технического прогресса настолько велика, что сегодняшняя супер-ЭВМ через 5 -10 лет будет уступать домашнему компьютеру. Термин супер вычисления появился еще 20-х годах прошлого века, а термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодоря Сеймура Крея и его супер-ЭВМ Cray-1, Cray-2. Хотя сам Сеймур Крей не предпочитает использовать данный термин. Называет свои машины, просто компьютер.
Cray-1 принято считать одним из первых супер-ЭВМ. Он появился в 1974 году. В процессорах компьютера был огромный, по тем временам, набор регистров. Которые разделялись на группы. Каждая группа имело свое собственное функциональное назначение. Блок адресных регистров который отвечал за адресацию в памяти ЭВМ. Блок векторных регистров, блок скалярных регистров. Производительность супер-ЭВМ составляла 180 миллионов операций в секунду над числами с плавающей точкой. Использовались 32 разрядные команды. Это учитывая то, что современники данного компьютера только начинали переходить от 8 разрядных команд к 16 разрядным.

Компьютеры Крея применялись в правительственных организациях, промышленных и научно исследовательских центрах. Многие суперкомпьютером называли тот компьютер который был создан Сеймуром Крем.

У Крея было много конкурирующих компаний. Но многие из них так и не достигли успеха. В 90-х годах эти фирмы начали банкротится. И нишу супер-ЭВМ заняли компьютерные гиганты, типа IBM. Компания Крея Cray Inc. До сих пор является одним из ведущих производителей суперкомпьютеров.

В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически — аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры.

Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений. Большинство параллельно работающих процессоров создавались на основе архитектуры RISC. RISC (Reduced Instruction Set Computing) – вычисления с сокращенным набором команд. Под этим термином производители процессоров понимают концепцию, где более простые инструкции выполняться быстрее. Данный метод позволяет снизить себестоимость производства процессоров. Одновременно увеличить их производительность.

Потребность в мощных вычислительных решениях быстро возрастала. Супер-ЭВМ слишком дорогие. Требовалась альтернатива. И на смену им пришли кластеры. Но и на сегодняшний день мощные компьютеры называют суперкомпьютерами.

Кластер это множество серверов объеденных в сеть и работают над одной задачей. Эта группа серверов обладает высокой производительностью. Во много раз больше чем то же самое количество серверов которые работали бы отдельно. Кластер дает высокую надежность. Выход из строя одного сервера не приведет к аварийной остановке всей системы, а лишь не много отразиться на ее производительности. Возможно произвести замену сервера в кластере без остановки всей системы. Не нужно сразу выкладывать огромные суммы за супер-ЭВМ. Кластер можно наращивать постепенно, что значительно амортизирует затраты предприятия.

Объединение серверов в кластер реализуется программно. Существует менеджер кластеров. Устанавливается на основной сервер и управляет всеми остальными узлами кластера. Клиентское программное обеспечение устанавливается на остальные серверы кластера.

Супер-ЭВМ отличаются от серверов которые необходимы для оперативной обработки запросов. Они отличаются и от мэйнфреймов, которые так же обладают высокой производительностью но служат для одновременной работы с множеством пользователей. Суперкомпьютеры могут применяться и для работы с одной программой.

Которая требует мощных ресурсов. Это моделирование погоды, расчет техпроцесса на производстве.

Рекомендуемые страницы:


Добавить комментарий

Закрыть меню