Дигитайзер

Типы

Технология ввода графической информации в дигитайзерах различна. В этой связи выделяют пять типов устройств:

  1. Акустические. Это одни из первых графических планшетов. Рисующее перо генерировало так называемые звуковые искры, которые улавливали микрофоны экрана. Таким образом, устройство определяло координаты информации. Существенным недостатком работы с планшетом было то, что ввод информации необходимо было делать в абсолютной тишине, так как акустические помехи могли испортить картинку. Данный тип дигитайзеров известен производством ряда устройств под общим названием Spark Tablet.
  2. Электромагнитные. Устройство таких планшетов было немного проще и производительнее предшествующих моделей. Под поверхностью экрана проходила проволочная сетка, излучающая слабые электромагнитные сигналы. Перо улавливало их, и так происходила фиксация его местоположения. К этой категории устройств относятся RAND Tablet, появившиеся еще в 1964 году.
  3. Пассивный курсор. Использовался все тот же принцип электромагнитной индукции, только в этих устройствах проволочная сетка и передавала сигналы, и принимала их. Ввод информации происходил при нажиме пера и бесконтактным путем. Рисующий прибор не требовал питания. Это был технический прорыв. Примером такого устройства может быть графический планшет Wacom.
  4. Активный курсор. В этом устройстве генератор сигналов перемещен в перо. Соответственно, ему необходимо питание. Электрические сигналы давали более четкое изображение, чем электромагнитные. Данную категорию устройств представляла компания FinePoint Innovations.
  5. Сенсорный дигитайзер – это современные устройства. Под поверхностью экрана в них находятся координатные провода. Они разделены тонким изолятором. Под давлением на стилус меняется проводимость. Чувствительный экран восприимчив и к координатам, и к силе нажима рисующего прибора. Некоторые системы позволяют отцифровывать трехмерные объекты.

Разумеется, акцент необходимо сделать на характеристике сенсорных устройств. По типу сканирования информации различают ультразвуковой, магнитный и лазерный сенсорный экран-дигитайзер. Первый является менее точным и надежным, так как скорость звука здесь напрямую зависит от температуры, давления воздуха и прочих окружающих явлений.

Магнитные дигитайзеры более точны, но чувствительны к металлическим предметам, находящимся рядом (стульям, компьютерам, различному оборудованию). Такие помехи могут вызвать искажение картинки.

И, наконец, лазерные дигитайзеры являются самыми точными, но дорогими сегодня. Однако и эти устройства имеют ряд ограничений. На них невозможна оцифровка предметов с отражающей, яркой или вогнутой поверхностью.

Кроме того, сегодня на техническом рынке можно встретить жесткие и гибкие дигитайзеры. Последние были презентованы еще в 1994 году.

Они более легкие, компактные при транспортировке. Блоки питания в них могут быть как встроенными, так и внешними.

Перья

Эти приборы считаются более удобными и чувствительными. Они предусматривают всего одну, две или три кнопки и реагируют на нажим руки. Перья – идеальные рисующие средства для художников и аниматоров. Степень давления на перо проявляется в изменении толщины линии, цвета, оттенка. Освоив такую хитрость, пользователь может имитировать рисование акварелью, масляными красками или темперой. Однако для реализации таких шедевров необходимы специальные программы.

Выбор перьев определяется субъективно. Некоторым пользователям по душе приборы, которые предлагает графический планшет Wacom. Они относительно тонкие и легкие. Другим же по вкусу тяжелые и сбалансированные фирменные перья Kurta.

Все указующие приборы могут быть проводными и беспроводными. Последние требуют питания от батареек, а потому являются более тяжелыми. Успешной попыткой исправить этот недостаток стали модели с внешним питанием.

Однако не стоит забывать о пассивных перьях от производителя Wacom, которые являются принимающим, а не отдающим элементом. Правда, эти приборы менее чувствительны к нажиму.

Вопросы потребителей

Нетрудно оценить спектр возможностей, которыми обладает дигитайзер. Что это такое и для чего он нужен – основные вопросы потребителей. Его основным предназначением являются профессиональные графические работы там, где требуется преобразование движений руки оператора в цифровую графику. Поэтому весьма просто определить аудиторию спроса. Это дизайнеры, компьютерные художники, аниматоры, архитекторы, которым необходимо автоматизированное проектирование. Однако еще в прошлом веке планшет-дигитайзер широко использовали в коммерции. Сегодня эта сфера может касаться недвижимости, транспорта и т. п.

Есть еще вопросы, которые часто задают покупатели: «Что позволяют делать плоттеры и дигитайзеры и почему очень часто их приобретают вместе?» Здесь можно провести аналогию со сканером и принтером. Если дигитайзер принимает и оцифровывает информацию, после чего пользователь может с помощью определенных программ внести коррективы в изображение на компьютере, то плоттеры являются своего рода принтерами. Они выводят информацию из цифрового формата в готовый, бумажный. Эти устройства также различаются по типам, характеристикам и пр.

Дигитайзеры

Дигитайзер (digitizer) — это кодирующее устройство, обеспечивающее ввод двумерного (в том числе и полутонового) или трехмерного (3D дигитайзеры) изображения в компьютер в виде растровой таблицы. является типичным внешним специализированными устройства графического ввода.
Задача получения 3D-моделей реальных объектов стоит перед промышленными дизайнерами, инженерами, художниками, аниматорами, разработчиками игровых приложений. Измерение геометрии сложных пространственных форм является основныме требованием для современных производителей технологической оснастки.
Основные области применения дигитайзеры:

  • Мультипликация

  • Оцифровывание географических карт для работы с географическими информационными системами (ГИС)

  • Инженерное проектирование, создание прототипов и обратный инжениринг

  • Научная визуализация

Примечание: Обычно процесс обработки изображения дигитайзеров называют сканированием (Не путать сосканером!).
Простейшим дигитайзером является графический планшет wacom.

Рис. Графический планшет
В состав устройства входит специальный указатель с датчиком, называемый пером. Собственный контроллер посылает импульсы по ортогональной сетке проводников, расположенной под плоскостью планшета. Получив два таких сигнала, контроллер преобразует их в координаты, передаваемые в ПК. Компьютер переводит эту информацию в координаты точки на экране монитора, соответствующие положению указателя на планшете. С помощью пера Вы рисуете на планшете, при этом графические редакторы могут воспринимать его как кисть, карандаш, мелок и т.д. Перевернув перо, Вы можете стереть изображение. Дигитайзеры, как следует из названия, являются инструментом оцифровки трехмерных объектов. Для дальнейшей обработки и редактирования результатов сканирования существует множество различных программ.
3D дигитайзер

Рис. 3D дигитайзер
Одним из примеров полнофункционального решения для оцифровки объектов любой формы служит недорогой дигитайзер из модельного ряда MicroScribe-3D производства компании Immersion Corporation. На несимметричной основе прикреплен трехшарнирный рычаг, оканчивающийся пером-датчиком. Шарниры с низким уровнем трения обеспечивают практически абсолютную свободу перемещения стального пера. Дигитайзер MicroScribe может оцифровывать предметы, находящиеся в радиусе до 840 мм. Рычаг устройств — жесткий, наличие шарниров позволяет провести дугу с максимальным углом в 330°. Наконечник «руки» может иметь разную форму: в виде шарика или острой иголочки — для снятия более точных показаний. В комплекте со сканером поставляются также ножные педали, которые играют роль правой и левой кнопок мыши.

Рис. Дигитайзер MicroScribe-3D.
Перед каждой оцифровкой дигитайзер должен быть откалиброван. Пользователь выбирает три реперные точки (переднюю правую, переднюю левую и заднюю правую) и вводит их координаты в компьютер с помощью ножных педалей. После этого можно приступать непосредственно к оцифровке. Механические дигитайзеры обладают достаточно высокой точностью — до 0,2 мм. Модели из серии MicroScribe-3D могут снимать координаты со скоростью 1000 точек в секунду и передают информацию со скоростью 38 Кбит/с. Перед сканированием многие дизайнеры расчерчивают объект, вырисовывают линии, по которым пройдет перо.

Рис. Подготовка объекта к оцифровыванию
Оцифровывать можно в полуавтоматическом и ручном режимах. Контактный щуп, установленный на складной арматуре с шарнирными соединениями, считывает информацию о том, в каком месте находится головка, и транслирует эту информацию в координаты X, Y и Z в трехмерном пространстве. Оцифрованные данные в дальнейшем обработываются с помощью специальных прикладных программ (AutoCad, Autodesk, Maya, Rhinoceros и др.).

На подготовку к сканированию и саму оцифровку сложного объекта может уйти несколько часов, но с накоплением опыта работы с дигитайзером это время значительно сокращается В процессе сканирования объекта, по мере того как координаты точек попадают в компьютер, на мониторе вырисовывается пространственная модель. Для построения 3D-образов можно использовать программы от Immersion Corporation (набор Digitizing Software Application), которые позволяют представлять отсканированные объекты различными способами, например в виде точек, линий, проволочного каркаса, сплайнов, NURBS (неоднородных рациональных B-сплайнов), а также редактировать и сохранять 3D-образы в файлах форматов dxf, IGES, obj, txt, 3ds для последующего импортирования в другие приложения.
Специалисты по заказным моделям для оцифровки моделей с телевизионным качеством используют более дорогие дигитайзеры для оцифровки своих объектов. Например, используют мобильные координатно-измерительные машины (КИМ) FaroArm производства фирмы FARO Technologies (США). КИМ FARO состоит из опорной плиты, которая крепится к любому подходящему месту и нескольких, соединенных между собой шарнирами, колен. Конструкция очень похожа на строение человеческой руки. У КИМ FARO так же есть своеобразные кистевой, локтевой и плечевой суставы. В каждом шарнире есть датчик контроля угловых перемещений, который в режиме реального времени следит за углом поворота колена, в результате чего программное обеспечение просчитывает координаты откалиброванного щупа — своеобразного пальца. В зависимости от числа колен имеются машины с 6-ю или 7-ю степенями свободы.
По сути, это контактный щуп, который при помощи нескольких потенциометров, установленных на складной арматуре с шарнирными соединениями, считывает информацию о том, в каком месте находится головка, и преобразует эту информацию в координаты X, Y и Z в трехмерном пространстве. Достаточно сделать необходимое количество замеров, и сетка готова. В сканере применена система противовесов; он автоматически учитывает изменения температуры и компенсирует соответствующие расширения и сжатия материалов. Это портативное устройство может работать с объектами вписывающимися в сферу диаметром до 3,65 м и имеет точность до 0,3 мм

Рис. Мобильные координатно-измерительные машины Faro Arm
Трехмерные дигитайзеры используются в качестве систем трехмерного боди-сканирования (3D body scan, т.е. «трехмерное сканирование человеческого тела»). Разработка этих систем была связана с требованиями быстрого обмера большого количества человек (армия), получения точного компьютерного изображения (киноиндустрия) и индивидуального пошива. Трехмерное боди-сканирование применяется также в медицине, мультипликации и при создании систем виртуальной реальности (VRML).

Примеры систем боди-сканирования:

Cyberware Whole Body Color 3D Scanner (производитель Cyberwear ). Сейчас существуют две модели полномасштабных боди-сканеров: WB4 и WBX (WB=Whole Body, т.е. «тело целиком»). Symcad (Французская компания TELMAT Industrie)

В геоинформатике, компьютерной графике, системах автоматического проектирования (САПР), картографии и научной обработке результатов измерения дигитайзер используют в качестве устройства для ручного цифрования графической и картографической информации в виде множества или последовательности точек, положение которых описывается прямоугольными декартовыми координатами плоскости дигитайзера.

Основные типы дигитайзеров по принципу работы:

Ультразвуковые Из всех систем по оцифровке 3D-объектов ультразвуковые (или сонарные) — наименее точные и надежные, но при этом самые чувствительные к изменениям в окружающем пространстве. Ультразвуковые дигитайзеры представляют собой систему передатчиков, жестко закрепленных на стенах и потолке. Смотрятся они весьма неэстетично. Передатчики излучают звуковые волны, на основании информации об отражении которых вычисляются координаты точек поверхности 3D-модели. Так как скорость звука зависит от атмосферного давления, температуры и других условий (например, влажности), то результаты оцифровки одного и того же объекта являются функцией состояния воздуха. Помимо этого данные системы очень восприимчивы к шуму, производимому различным оборудованием (компьютерами, кондиционерами), даже жужжание флуоресцентных ламп влияет на оцифровку. К тому же ультразвуковые системы издают странные «кликающие» звуки, раздражающие оператора и всех находящихся в помещении. В идеальных условиях абсолютная погрешность полученных результатов составляет 1,4 мм. Подобные сканеры применяются в основном в медицине и при оцифровке скульптур.

Электромагнитные Принцип работы электромагнитных 3D-дигитайзеров такой же, как у ультразвуковых систем (принцип радара), только для построения пространственной модели вместо звуковых волн используются электромагнитные. Результат работы этих сканеров не зависит от погодных условий, но находящиеся поблизости металлические предметы или источники магнитного поля снижают точность измерений. Естественно, что подобные системы не могут оцифровывать металлические объекты. Даже в специальных помещениях, не содержащих ничего металлического, погрешность магнитных систем составляет не менее 0,7 мм.

Лазерные Прежде всего следует отметить, что цена этих так называемых бесконтактных (оператор не обводит объект щупом) систем очень высока и нередки случаи, когда она выражается числом с пятью нулями (в американских долларах). Лазерные дигитайзеры обладают самой высокой точностью, но область их применения также имеет значительные ограничения. Большие трудности вызывает сканирование объектов с зеркальными, прозрачными и полупрозрачными поверхностями, а также предметов большого размера либо имеющих впадины или выступы, препятствующие прямому прохождению лазерного пучка. Лазерные дигитайзеры — полностью автоматизированные системы. Невозможность участия художника в процессе оцифровки не позволяет расставить акценты, например более подробно отобразить определенную часть объекта, или, наоборот, приводит к получению детализированных моделей, занимающих слишком много места и требующих значительных мощностей для их обработки. Сама оцифровка происходит достаточно быстро, но последующий процесс перевода автоматически полученных данных в конечное изображение может занять много времени (особенно это касается систем с точечной проекцией).

Механические Эти устройства являются золотой серединой среди всех классов дигитайзеров. Высокая точность и относительно низкая стоимость сделали эти устройства самыми популярными. Принцип их работы заключается в следующем: контуры оцифровываемого объекта обводятся прецизионным щупом, положение которого замеряется механическими датчиками. Затем, используя массив трехмерных координат, специальная программа строит каркасную модель объекта . Большим плюсом механических сканеров является то, что получаемые с их помощью результаты не зависят от погодных условий, уровня шума, наличия электромагнитных полей. Тип поверхности также не имеет значения. Поскольку механические дигитайзеры являются ручными устройствами, их использование требует четкой координации движений и внимательности.

В состав дигитайзера входят:
— электронный планшет, на котором располагают чертеж или карту, предназначенную для оцифровки;
— специальный указатель с датчиком, напоминающим увеличительное стекло (лупу) с черным перекрестьем в центре.
Электронный графический планшет снабжен собственным контроллером. В задачи электронной части дигитайзера входит посылка импульсов по сетке проводников, расположенных под плоскостью планшета.
Когда импульс проходит под перекрестьем указателя, датчик формирует сигнал, посылаемый контроллеру. Получив два таких сигнала — от горизонтального и вертикального проводников, -контроллер преобразует их в координаты и передает эту информацию в компьютер.
Здесь принятая информация переводится в координаты точки на экране монитора, соответствующей положению указателя на планшете.

DuoSense™ — это двухрежимный дигитайзер, который позволяет осуществлять перьевой и пальцевый ввод информации, а также обладает поддержкой одновременного нажатия. Использование пера (или стилуса) имеет довольно-таки ограниченное применение, а касания экрана позволяют вывести взаимодействие человека и компьютера на новый уровень, поскольку они естественны для человека.

По сути «двухрежимный дигитайзер» — это дигитайзер, который воспринимает две формы ввода: нажатие/одновременные нажатия и перьерой ввод. Технология N-trig основа на обычном LCD-экране, поэтому для ее реализации требуется лишь корпус ноутбука, LCD-панель и, собственно, дигитайзер N-trig. Конструктивно это выглядит следующим образом:

Давайте поговорим о том, что отличает DuoSense™ от других технологий, присутствующих на рынке.

Во-первых, начнем с того, чего в DuoSense™ нет (помните, что все, что описывается в данной статье имеет отношение лишь к компьютерам, а никак не к мобильным телефонам):
EMR-дигитайзер (от англ. electromagnetic resonanсe): такие дигитайзеры располагаются позади LCD-экрана, поэтому требуют наличия специальных панелей. EMR-дигитайзеры воспринимают касания стилуса, умеют отслеживать его движение, но совершенно не понимают нажатия пальцами рук.
Ни одна из этих технологий не поддерживает перьевой ввод и управление нажатием одновременно. Вот в чем основное преимущество дигитайзеров DuoSense™. Ну а теперь поговорим о том, из чего и как сделан сенсор, а также посмотрим на характеристики.



Слои сенсора DuoSense™


Слои панели DuoSense™


Структура монитора DuoSense™

Теперь о структуре. Рамки данной статьи, к сожалению, не позволяют рассказать, как работает ITO-слой (абб. от Indium Tin Oxide), поэтому если вам интересна данная тема, за дополнительной информацией следуют обращаться сюда.
PCB — это аббревиатура от «Printed Circuit Board» или просто «печатная плата». Они по сути является мостом между входом дигитайзера и тем устройством, к которому подключен дигитайзер.
Слои дигитайзера настолько тонки, что устройства с дигитайзерами фактически сохраняют свои оригинальные размеры. И еще о преимуществах дигитайзеров DuoSense:
Касание с нулевым давлением: В дигитайзерах DuoSense™ используется емкостные (от англ. capacitive) сенсоры, а не привычные резистивные (от англ. resistive). Это значит, что можно попрощаться со случайными нажатиями!
Уникальный электростатический стилус: Стилус для DuoSense™ эргономичен, легок и не требует внутреннего источника питания.
Высочайшая точность: Точность в 0.4 мм при нулевой силе импульса гарантируют высочайшую точность решениям DuoSense™.
Возможность различать случайное и преднамеренное нажатия: DuoSense™ умеет различать преднамеренное и случайное нажатия на панель, а также позволяет моментально переключаться между перьевым вводом и управлением нажатиями.
Надежность и масштабируемость: Дизайн DuoSense™ в значительной степени надежнее аналогов, поскольку не требует наличия внешнего контроллера.
Совместимость с ОС: На текущий момент технология DuoSense™ поддерживается в XP и Vista. Версия для Windows 7 находится в разработке.

Основные характеристики дигитайзеров

Дигитайзеры бывают:

● электростатические;

● электромагнитные.

В электростатических дигитайзерах регистрируется локальное изменение электростатического потенциала сетки под курсором, а в электромагнитных — курсор излучает электромагнитный сигнал, воспринимаемый сеткой. Электромагнитный дигитайзер чувствителен к помехам, создаваемым внешними источниками, например мониторами.

Шаг считывания информации называется разрешением (resolution) дигитайзера. Различаются разрешение физическое и логическое. Предел физического разрешения дигитайзера определяется шагом считывания регистрирующей сетки. Логическое разрешение является переменной величиной в настройке дигитайзера и, как указывалось, может быть значительно меньшим.

Точность дигитайзера (accuracy) определяется погрешностью в определении координат курсора (хотя точность, строго говоря, величина, обратная погрешности и зависит от типа дигитайзера и его конструктивных особенностей). Точность существующих моделей колеблется в пределах от 0,005 до 0,03 дюйма, для электромагнитных дигитайзеров обычно выше, чем для электростатических. На результирующую точность ввода изображения влияет также аккуратность действий оператора, в среднем хороший оператор вносит погрешность не более 0~004 дюйма.

Размер рабочей области (surface sizes) определяется размером активной поверхности дигитайзера.

Скорость обмена (output rate) — скорость передачи координат дигитайзером. Скорость обмена дигитайзера с компьютером зависит от оператора, но обычно ограничивается техническими возможностями устройства на уровне i00 — 200 точек/с. Устройства указания дигитайзеров:

● перо — указочка, снабженная одной, двумя или тремя кнопками. Существуют перья простые и определяющие усилие, с которым наконечник пера прижимается к планшету. Последние часто используются художниками, поскольку могут воспринимать до 256 градаций нажима (от степени нажима зависит толщина линии, цвет в палитре, оттенок цвета). Для реализации таких возможностей необходимы программы Adobe PhotoShop, Aldus PhotoStyler, Autodesk Animator Pro, CorelDraw и т. д;

● курсоры — используются реже, обычно в сложных приложениях. Они бывают 4-, 8-, 12, 16-клавишными. От двух до четырех клавиш из них стандартные, остальные программируются в приложениях, например в AutoCad. Дизайн курсоров самый разный, вплоть до формы мыши. И курсоры, и перья бывают как с проводом, так и без него. Последний вариант удобнее в работе, но требует наличия батареи и, соответственно, дополнительного обслуживания. Исключение составляют. пассивные неизлучающие перья фирмы Wacom.

При выборе дигитайзера следует в первую очередь убедиться в надежности и удобстве устройства указания.

Нужно также выбрать размеры рабочего поля — они колеблются от 6 х 8 до 44 х 62 дюйма, оценить необходимую точность передачи координат курсора и сопоставить ее с разрешающей способностью дигитайзера.

Наконец, убедиться в наличии всего необходимого программного обеспечения и, в частности, драйверов.

Основания дигитайзера могут быть жесткие и гибкие, последние имеют меньший вес, компактны при транспортировке и более дешевые.

Примеры дигитайзеров: CalComp DrawingFlex 333641, 334841; ОТСО Roil-up 2024R, 3036R,3648R (гибкие); CalComp DrawingBoard 3400, Summa Grid, Kurta Х1 С, ОТСО Super L22 (жесткие большого формата до 1220 х 1524 мм); CalComp DrawingBoard Ш 34180, Hitachi Puma Pro, ОТСО Ultima, Kurta XLP, Kurta XGT, SummaSketch Ш (жесткие формата АЗ). В табл. 7.15 представлены основные характеристики некоторых дигитайзеров.

Плоттеры

Плоттеры (plotter, графопостроители) — устройства вывода графической информации (чертежей, схем, рисунков, диаграмм и т. д.) из компьютера на бумажный или иной вид носителя. Плоттеры по принципу формирования изображения можно разделить на два класса:

● векторного типа, в которых пишущий узел может перемещаться относительно бумаги сразу по двум координатам, и изображение на бумаге создается непосредственно вычерчиванием нужных прямых и кривых в любых направлениях;

● растрового типа, в которых пишущий узел одновременно перемещается относительно бумаги только в одном направлении, и изображение на бумаге формируется строка за строкой из последовательно наносимых точек.

По принципу действия плоттеры бывают:

● перьевые;

●струйные;

● лазерные;

● термографические;

● электростатические.

Векторные плоттеры бывают только перьевыми, остальные типы плоттеров растровые.

Типы плоттеров

Перьевые плоттеры (pen plotter) — это электромеханические устройства векторного типа, в которых изображение создается путем вычерчивания линий при помощи пишущего элемента, обобщенно называемого пером. В качестве перьев в разных моделях плоттеров используются перья, фибровые и пластиковые стержни (фломастеры), шариковые узлы одноразового и многоразового действия, карандашные грифели и мелки.

Перьевые плоттеры могут быть:

● рулонными;

● планшетными. Рулонные плоттеры более компактны, удобны и точны в работе; они используются наиболее часто для создания крупноформатных чертежей форматов А1 и АО, причем отматывание и отрезание листа чертежа от рулонной бумаги выполняется автоматически. Планшетные плоттеры. обычно используются для создания чертежей формата А3 и меньше.

Перьевые плоттеры, расходующие чернила, обеспечивают высокое качество как однотонных, так и цветных изображений, но имеют невысокую скорость вычерчивания, так как необходимо время на вытекание красителя из пера и его высыхание. Кроме того, пишущие узлы с жидкими красителями требуют регулярного обслуживания и чистки ввиду частого забивания канала подачи красителя твердыми фракциями, в том числе и частицами засохшей краски. При использовании карандашных грифелей качество похуже, но скорость вычерчивания выше и, главное, существенно проще и дешевле обслуживание пишущего узла (просто замена грифеля, приобретаемого в магазине канцтоваров). Фломастерные и шариковые перьевые плоттеры по своим характеристикам занимают промежуточное положение между рассмотренными ранее.

Ведущие фирмы-изготовители перьевых плоттеров: CalComp (создавшая в 1959 году первый в мире плоттер — модель CalComp 565), Hewlett-Packard, Summagraphics, Mutoh (в частности, карандашная модель Mutoh XP 620). Надо сказать, что перьевые плоттеры постепенно и интенсивно вытесняются, в частности, струйными плоттерами.

Струйные плоттеры (inkjet plotter) при формировании изображения направленно распыляют капельки чернил на бумагу при помощи мельчайших сопел печатающей головки — так называемая «пузырьковая» технология струйной печати, описанная кратко при рассмотрении струйных принтеров. Качество чертежей, выполняемых струйными плоттерами, очень высокое. Существуют три разновидности струйных плоттеров:

●монохромные;

● цветные;

● с возможностью цветной печати.

Цветные струйные плоттеры имеют большее количество сопел в пишущей головке, но их разрешающая способность при этом уменьшается примерно в два раза,

Для создания цветного изображения используется обычно принятая в полиграфии цветовая схема CMYK, то есть подразумеваются четыре группы сопел, в каждую из которых поступает краситель определенного цвета: Cyan — голубой, Magenta— пурпурный, Уе11оч — желтый, blacK — черный. Цветные плоттеры часто называют полноцветными, чтобы отличать от плоттеров с возможностью цветной печати. Струйные плотптеры с возможностью цветной печати позволяют делать цветными только линии или закрашивать же в разные цвета целые области они не умеют.

Примеры струйных плоттеров: Hewlett — Packard НР 220, Summagraphics SummaJet 2М, CalComp TechJet Designer 720 (монохромные); CalComp TechJet Color, Hewlett — Packard НР 650C, Encad Novajet 3 (полноцветные). Скорость вычерчивания у струйных плоттеров также невысока, поэтому для вывода больших объемов графической информации их использовать нецелесообразно.

Электростатические плоттеры (electrostatic plotter) основываются на технологии создания с помощью записывающих головок скрытого потенциального рельефа на поверхности специальной электростатической бумаги и осаждения на этот рельеф жидкого красителя. Для получения цветного изображения процесс вычерчивания повторяется четыре раза (цветовая схема CMYK), что, конечно не очень удобно. Второй существенный недостаток — использование специальной дорогостоящей электростатической бумаги. Качество изображения и скорость рисования у этих плоттеров высокие.

Термографические плоттеры (их часто называют плоттерами прямого вывода изображения — direct imaging plotter) используют специальную термореагентную бумагу, темнеющую под воздействием тепла. Рисунок только монохромный и наносится на нее специальными миниатюрными нагревателями, выполненными в виде «гребенки». Разрешающая способность (до 800 dpi) и скорость вычерчивания (до 50 мм/с) очень высокие; термобумага не слишком дорогая, а сами аппараты простые и не требуют регулярного обслуживания. Поэтому термографические плоттеры получили широкое распространение, в частности, в проектных организациях при больших объемах чертежных работ. Примеры термографических плоттеров: CalComp DrawingMaster 600, CalComp DrawingMaster 800, ОСЕ G9050-S. Выпускаются и термографические плоттеры, использующие термореагентную копирку, при этом возможна цветная печать путем выполнения четырех проходов при копирках разного цвета, но они заметного распространения не получили.

В лазерных плоттерах (laser plotter) в качестве промежуточного носителя служит ‘ вращающийся барабан, покрытый слоем полупроводника. Заряженные лучом ‘ лазера области полупроводника притягивают сухой тонер, который потом пере- носится на проходящую под барабаном бумагу. После этого бумага с нанесенным тонером проходит через нагреватель, под действием тепла тонер запекается и закрепляется на бумаге (типичная электрографическая технология). Достоинства лазерных плоттеров очевидны: использование обычной бумаги, высокие качество изображения (разрешение до 800 dpi) и быстродействие (до 50 мм/с), бесшумность и полная автоматизация работы, имеется принципиальная возможность цветной печати, но при этом растет стоимость плоттера. Недавно появились лазерные плоттеры, использующие для нанесения потенциального рельефа на барабан не лазерный луч, а линейку из точечных полупроводниковых. светодиодов (Light Emitting Diode — LED), что сделало плоттер более простым и надежным (так называемые LED-плоттеры). Они также сравнительно дороги, но применяются в сложных системах довольно интенсивно.

Примеры лазерных LED-плоттеров: CalComp Solus4-АО, OCE 9555, JDL 400ОЕ. Плоттеры бывают рулонные и планшетные, многие из них имеют весьма емкую встроенную память (от 2 до 64 Мбайт), дисплей, позволяют выбирать несколько (2-7) форматов данных, имеют ряд других сервисных возможностей. Встроенная память у плоттеров используется для улучшения их функциональных показателей (быстродействие, удобство работы, автономность); в эту буферную память загружается графическая информация, которая обрабатывается процессором плоттера при создании изображения. Для перьевых плоттеров память обеспечивает лишь известную автономность их работы, а для растровых моделей она важна еще и для обеспечения быстродействия, разрешающей способности и формата изображения.

При выборе плоттера следует обратить внимание на следующие аспекты:

●набор функциональных возможностей, по которым можно оценить применимость плоттера для решения конкретных задач (размеры носителей и изображения, объемы выполняемых работ и т. д.);

● возможность формирования цветного изображения;

● качество изображения (разрешающую способность);

● производительность (скорость вычерчивания);

● надежность и удобство работы, уровень сервиса;

● возможность продолжительность автономной работы (без вмешательства оператора);

● эксплуатационные затраты, включающие стоимость носителя, расходных материалов, обслуживания устройства, потребление электроэнергии;

● цена плоттера.

В табл. 7.16 представлены основные характеристики некоторых плоттеров.

Дата добавления: 2016-06-22; просмотров: 2981;

Добавить комментарий

Закрыть меню