Что такое взаимозаменяемость?

Измерения

Модуль 1.

Лекция 1. Понятие о взаимозаменяемости и стандартизации. Основы

принципа взаимозаменяемости (2 часа)………………………………3

Лекция 2. Системы допусков и посадок для элементов плоских и

цилиндрических соединений (2 часа)………………………………..10

Лекция 3. Расчет и выбор посадок для гладких цилиндрических

соединений (ГЦС) (4 часа)……………………………………………17

Лекция 4. Расчет и конструирование калибров для контроля деталей

гладких соединений (2 часа)…………………….……………………28

Лекция 5. Допуски и посадки подшипников качения (2 часа).………………..36

Лекция 6. Нормирование и обозначение шероховатости поверхности

(2 часа)…………………………………………………………………45

Лекция 7. Допуски формы и расположения поверхности (2 часа)……………62

Модуль 2.

Лекция 8. Размерные цепи (4 часа)………………………………………………67

Лекция 9. Взаимозаменяемость, методы и средства измерения и контроля

зубчатых передач (4 часа)……………………………………………81

Лекция 10. Взаимозаменяемость резьбовых соединений (2 часа)……………95

Лекция 11. Взаимозаменяемость шпоночных и шлицевых соединений

(2 часа)………………………………………………………..……..101

Лекция 12. Допуски углов. Взаимозаменяемость конических соединений

(2 часа)………………………………………………………………111

Лекция 13. Понятие о метрологии и технических измерениях (2 часа)…….118

Лекция 1. Понятие о взаимозаменяемости и стандартизации. Основы принципа взаимозаменяемости

Современное машиностроение характеризуется:

— непрерывным увеличением мощностей и производительности машин;

— постоянным совершенствованием конструкций машин и других изделий;

— повышением требований к точности изготовления машин;

— ростом механизации и автоматизации производства.

Для успешного развития машиностроения по этим направлениям большое значение имеет организация производства машин и других изделий на основе взаимозаменяемости и стандартизации.

Цель дисциплины: знакомство с методами обеспечения взаимозаменяемости,

стандартизацией, а также методами измерения и контроля

применительно к современным изделиям машиностроения.

Из истории развития взаимозаменяемости и стандартизации.

Элементы взаимозаменяемости и стандартизации появились очень давно.

Так, например, водопровод, построенный рабами Рима, был выполнен из труб строго определенного диаметра. Для строительства пирамид в Древнем Египте использовались унифицированные каменные блоки.

В 18 веке по указу Петра 1 была построена серия военных судов с одинаковыми размерами, вооружением, якорями. В металлообрабатывающей промышленности взаимозаменяемость и стандартизация впервые были применены в 1761 году на Тульском, а затем Ижевском оружейных заводах.

Понятие о взаимозаменяемости и ее видах.

Взаимозаменяемость – это возможность сборки независимо изготовленных деталей в узел, а узлов в машину без дополнительных операций обработки и пригонки. При этом должна обеспечиваться нормальная работа механизма.

Для обеспечения взаимозаменяемости деталей и сборочных единиц они должны быть изготовлены с заданной точностью, т.е. так, чтобы их размеры, форма поверхностей и другие параметры находились в пределах заданных при проектировании изделия.

Комплекс научно – технических исходных положений, выполнение которых при конструировании, производстве и эксплуатации обеспечивает взаимозаменяемость деталей, сборочных единиц и изделий называют принципом взаимозаменяемости.

Различают полную и неполную взаимозаменяемость деталей, собираемых в сборочные единицы.

Полная взаимозаменяемость обеспечивает возможность беспригонной сборки (или замены при ремонте) любых независимо изготовленных с заданной точностью однотипных деталей в сборочную единицу. (Например, болты, гайки, шайбы, втулки, зубчатые колеса).

Ограниченно взаимозаменяемыми называются такие детали, при сборке или смене которых может потребоваться групповой подбор деталей (селективная сборка), применение компенсаторов, регулирование положения деталей, пригонка. (Например, сборка редуктора, подшипников качения).

Уровень взаимозаменяемости производства изделия характеризуется коэффициентом взаимозаменяемости, равным отношению трудоемкости изготовления взаимозаменяемых деталей к общей трудоемкости изготовления изделия.

Различают также внешнюю и внутреннюю взаимозаменяемость.

Внешняя – это взаимозаменяемость покупных или кооперируемых изделий (монтируемых в другие более сложные изделия) и сборочных единиц по эксплуатационным показателям, по размерам и форме присоединительных поверхностей. (Например, в электродвигателях внешнюю взаимозаменяемость обеспечивают по частоте вращения вала, мощности, а также по диаметру вала; в подшипниках качения – по наружному диаметру наружного кольца и внутреннему диаметру внутреннего кольца, а также по точности вращения).

Внутренняя взаимозаменяемость распространяется на детали, сборочные единицы и механизмы, входящие в изделие. (Например, в подшипнике качения внутреннюю групповую взаимозаменяемость имеют тела качения и кольца).

Базой для осуществления взаимозаменяемости в современном промышленном производстве является стандартизация.

Понятия о стандартизации.

Категории стандартов

Крупнейшей международной организацией в области стандартизации является ИСО (до 1941 г. называлась ИСА, организована в 1926 г.) Высшим органом ИСО является Генеральная Ассамблея, которая собирается раз в 3 года, принимает решения по наиболее важным вопросам и избирает Президента организации. Организация состоит из большого количества клиентов. В Уставе указывается основная цель ИСО – «содействовать благоприятному развитию стандартизации во всем мире для того, чтобы облегчить международный обмен товарами и развивать взаимное сотрудничество в различных областях деятельности.

Основные термины и определения в области стандартизации установлены Комитетом ИСО по изучению научных принципов стандартизации (СТАКО).

Стандартизация – это плановая деятельность по установлению обязательных правил, норм и требований, выполнение которых повышает качество продукции и производительность труда.

Стандарт – это нормативно – технический документ, устанавливающий требования к группам однородной продукции и правила, обеспечивающие её разработку, производство и применение.

Технические условия (ТУ) – нормативно – технический документ, устанавливающий требования к конкретным изделиям, материалу, их изготовлению и контролю.

Для усиления роли стандартизации разработана и введена в действия государственная (державна) система стандартизации ДСС. Она определяет цели и задачи стандартизации, структуру органов и служб стандартизации, порядок разработки, оформления, утверждения, издания и внедрения стандартов.

Основными целями стандартизации являются:

— повышение качества продукции;

— развитие экспорта;

— развитие специализации;

— развитие кооперации.

В зависимости от сферы действия ДСС предусматривает следующие категории стандартов:

ГОСТ (ДСТ) – государственные;

ОСТ – отраслевые;

СТП – предприятий.

Основные термины и определения принципа взаимозаменяемости

Основные термины и определения установлены в ГОСТ 25346 – 82.

Соединение – это две или несколько деталей подвижно или неподвижно сопряженные друг с другом.

а) б)

Рисунок 1.1 – Примеры соединений

а) гладкое цилиндрическое соединение;

б) шпоночное соединение

Номинальный размер – это общий для деталей соединения размер, полученный в результате расчета и округленный в соответствии с рядами нормальных линейных размеров установленных ГОСТ 6636 – 69 и распространенных на базе рядов предпочтительных чисел ГОСТ 8032 – 56.

Ряды предпочтительных чисел (ряды Ренара) представляют собой геометрические прогрессии.

R5: =1,6 – 10; 16; 25; 40; 63; 100…

R10: = 1,25 – 10; 12,5; 16; 20; 25…

Действительный размер – это размер, полученный в результате обработки детали и измеренный с допустимой погрешностью.

При выполнении чертежей размер удобнее всего проставлять в виде номинального размера с отклонениями.

Æ55

Предельные размеры – это два предельно допускаемых размера, между которыми должен находиться действительный размер годной детали. ( )

Рисунок 1.2 – Предельные размеры отверстия и вала

Допуск размера – это разность между наибольшим и наименьшим предельными размерами (Т – Tolerance)

Допуск является мерой точности размера и определяет трудоемкость изготовления детали. Чем больше допуск, тем проще и дешевле изготовление детали.

Понятия о номинальном размере и отклонениях упрощает графическое изображение допусков в виде схем расположения полей допусков.

Рисунок 1.3 – Схема гладкого цилиндрического соединения

Зона, заключенная между двумя линиями, соответствующими верхнему и нижнему отклонениям, называется полем допуска.

Поле допуска более широкое понятие, чем допуск. Поле допуска характеризуется своей величиной (допуском) и расположением относительно номинального размера. Таким образом, поле допуска может задаваться двумя способами:

а) в виде верхнего (es, ES) и нижнего (ei, EI) отклонения;

б) в виде основного отклонения и допуска (Т).

Рассмотрим соединение отверстия и вала.

Разность размеров отверстия и вала до сборки определяет характер соединения деталей, или посадку.

Если (зазор)

Если (натяг)

В соединениях, где необходим зазор, действительный зазор должен находиться между двумя предельными значениями – наибольшим и наименьшим зазорами (S ).Соответственно в соединениях с натягом – между .

Предельные зазоры и натяги на чертежах не указывают. Конструктор назначает посадку в виде определенного сочетания полей допусков отверстия и вала. При этом номинальный размер отверстия и вала является общим и называется номинальным размером соединения d .

Типы посадок.

В зависимости от взаимного расположения полей допусков отверстия и вала различают посадки трех типов: с зазором, натягом и переходные.

Понятие о взаимозаменяемости и ее видах

Нормирование требований к точности в машиностроении. Взаимозаменяемость

Качеством продукции называется совокупность свойств продукции, обуславливающая ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Таким образом, качество любого вида продукции определяется ее свойствами, составом, размерами и другими параметрами, установленными с учетом надежности и стоимости. Оценивать и гарантировать качество изделий можно только в том случае, если их качественные характеристики четко определены и должным образом узаконены. Необходимые качественные характеристики и показатели различной продукции устанавливаются нормативно–технической документацией, к которой относят конструкторские, технологические, эксплуатационные и другие виды документов. Эти документы должны отвечать требованиям соответствующих стандартов.

Понятие о взаимозаменяемости и ее видах

В 1908 г. Генри Форд поразил членов Королевского автомобильного клуба. Он взял три принадлежащих им Кадиллака, полностью разобрал их и перемешал все комплектующие. Затем его инженеры извлекли из получившейся кучи соответствующие части, прямо на глазах членов клуба вновь собрали автомобили и с триумфом совершили на них круг почета.

Сегодня уже никто не удивится тому, что большинство комплектующих автомобиля могут быть заменены на любой имеющийся в запасе аналог. Но в 1908 г. каждый автомобиль рассматривался как самостоятельный организм, был изделием индивидуальной ручной работы. По этой причине составные части автомобилей даже одной и той же модели редко могли заменить друг друга.

Производство таких компонентов, которые могут быть взаимозаменяемыми без каких–либо дополнительных проверок и напрямую использоваться для сборки автомобиля, т.е. выпуск качественных изделий массовым тиражом – именно в этом заключался секрет Генри Форда, обеспечившего за счет этого на своих заводах быстрый рост объемов производства автомобилей «Форд».

Конструкторы стремятся создать детали машин, приборов и механизмов взаимозаменяемыми, т.е. такими, которые могут быть легко заменены при сборке или ремонте машины другими, того же номера и наименования.

Взаимозаменяемость в машиностроении относится к одному из качественных показателей технологичности конструкций изделий. Определение взаимозаменяемости предусмотрено в ГОСТ 18831–73: Взаимозаменяемость – свойство конструкции составной части изделия, обеспечивающее возможность ее применения вместо другой без дополнительной обработки, с сохранением заданного качества изделия, в состав которого оно входит». Другими словами, взаимозаменяемость – свойство независимо изготовленных деталей собираться в узлы и другие, более сложные сборочные единицы без предварительной подгонки, при этом узлы и сборочные единицы должны соответствовать заданным технико-экономическим показателям. Взаимозаменяемые детали могут быть изготовлены независимо друг от друга в разное время и в разных местах, что экономически выгодно.

Взаимозаменяемые детали должны быть одинаковыми по размерам, форме, твердости, прочности, химическим, электрическим свойствам и др. Если все эти функциональные параметры качества деталей установлены в пределах допусков, которые обеспечивают высокие показатели работы машины (мощность, надежность, скорость и др.) и оптимальную стоимость ее, то это называется функциональной взаимозаменяемостью.

Взаимозаменяемость может быть полной и неполной, внешней и внутренней.

Наиболее широко применяют полную взаимозаменяемость. Это вид взаимозаменяемости, при которой обеспечивается возможность беспригоночной сборки (или замены при ремонте) любых независимо изготовленных с заданной точностью однотипных деталей в составные части, а последних – в изделия при соблюдении предъявленных к ним (к составным частям или изделиям) технических требований по всем параметрам качества. Она достигается только тогда, когда после изготовления размеры, форма, механические, электрические и другие количественные и качественные характеристики деталей и составных частей находятся в заданных пределах, а собранные изделия удовлетворяют техническим требованиям. Выполнение требований к точности деталей и составных частей изделий является важнейшим исходным условием обеспечения взаимозаменяемости.

Комплекс научно–технических исходных положений, выполнение которых при конструировании, производстве и эксплуатации обеспечивает взаимозаменяемость деталей, составных частей и изделий в целом называется принципом взаимозаменяемости.

Взаимозаменяемыми могут быть детали, составные части (узлы) и изделия в целом. В первую очередь такими должны быть те детали и составные части, от которых зависят надежность, долговечность и другие эксплуатационные показатели изделий. Это требование распространяется и на запасные части.

Свойство собираемости и возможности равноценной замены любого экземпляра взаимозаменяемой детали и составной части изделия любым другим однотипным экземпляром позволило на машиностроительных заводах серийного и массового производства изготовлять детали в одних цехах, а собирать их в составные части (узлы) и изделия – в других, независимо друг от друга. При сборке используют стандартные крепежные детали, подшипники качения, электротехнические, резиновые и пластмассовые изделия, а часто и унифицированные агрегаты, получаемые от других предприятий. При полной взаимозаменяемости сборка составных частей и машин, удовлетворяющих предъявляемым требованиям, производится без доработки деталей и составных частей. Такое производство называется взаимозаменяемым.

Преимущества полной взаимозаменяемости:

1) упрощается процесс сборки, он сводится к простому соединению деталей рабочими невысокой квалификации;

2) сборочный процесс точно нормируется во времени, легко укладывается в устанавливаемый темп работы и может быть организован поточным методом; создаются условия для автоматизации процессов изготовления и сборки изделий;

3) возможны широкая специализация и кооперирование заводов (т.е.

изготовление заводом–поставщиком ограниченной номенклатуры унифицированных изделий, узлов и деталей и поставка их заводу, выпускающему основные изделия);

4) упрощается ремонт изделий, так как любая износившаяся или поломанная деталь или узел могут быть заменены новыми (запасными).

Полную взаимозаменяемость экономически целесообразно применять для деталей с точностью не выше 5–6 квалитетов и для составных частей изделий, имеющих небольшое число деталей, например две, образующих то или иное соединение, а также в тех случаях, когда несоблюдение заданных зазоров или натягов недопустимо даже у части изделий.

Иногда эксплуатационные требования к изделиям приводят к необходимости изготовлять детали и составные части с малыми, технологически трудновыполнимыми, допусками. В этих случаях применяют групповой подбор деталей (селективную сборку), компенсаторы, регулирование положения некоторых частей машин и приборов, пригонку. Такую взаимозаменяемость называют неполной(ограниченной). Она может осуществляться не по всем, а только по отдельным геометрическим или другим параметрам.

Различают также внешнюю и внутреннюю взаимозаменяемость.

Внешняя взаимозаменяемость – это взаимозаменяемость изделий, монтируемых в другие более сложные изделия и узлов по эксплуатационным показателям, а также по размерам и форме присоединительных поверхностей, т.е. таких, по которым взаимосвязанные узлы основного изделия соединяют между собой и с покупными агрегатами. Например, в электродвигателях внешняя взаимозаменяемость осуществляется по числу оборотов вала и мощности, а также по размерам присоединительных поверхностей, в подшипниках качения – по наружному диаметру наружного кольца и внутреннему диаметру внутреннего кольца, а также по точности вращения.

Внутренняя взаимозаменяемость распространятся на детали, составляющие отдельные узлы, или на составные части и механизмы, входящие в изделие. Например, в подшипнике качения внутреннюю групповую взаимозаменяемость имеют тела качения и кольца.

Первыми применили принцип взаимозаменяемости тульские мастера оружейного дела. В инструкциях 1706–1715 гг. Петр I предписал мастерам при изготовлении ружей следить за правильным применением калибров, по которым делались детали и за однородностью отдельных частей ружей. В 1826 г. принцип взаимозаменяемости в производстве оружия на Тульском оружейном заводе был блестяще продемонстрирован иностранным представителям. Взятые со склада без выбора тридцать ружей были разобраны и детали их перемешаны. Затем ружья были снова собраны из первых попавшихся деталей и действовали безотказно.

Широкое внедрение принципа взаимозаменяемости в гражданскую промышленность началось после первой мировой войны (1914–1918), которая заставила раскрыть секреты конструирования и производства взаимозаменяемых деталей на отдельных военных предприятиях, как в России, так и за рубежом.

Понятие о взаимозаменяемости в машиностроении. Полная и ограниченная взаимозаменяемость

Стр 1 из 5Следующая ⇒

Допуски и посадки.

На современных машиностроительных заводах детали, как правило, изготавливают независимо друг от друга в одних цехах, а собирают в сборочные единицы и изделия – в других. При сборке широко используют крепежные детали, различные виды подшипников, электротехнические и другие комплектующие готовых изделий, изготовленные в разное время и на разных заводах. Несмотря на это, сборка изделия осуществляется без подгонки деталей, а полученные в результате сборки изделия отвечают установленным на них техническим условиям. Такая организация производства стала возможной благодаря реализации принципов нормирования требований к деталям, сборочным единицам, машинам, используемых при конструировании.

Основополагающими принципами при конструировании являются принципы взаимозаменяемости. Они обеспечиваются при изготовлении и используются при эксплуатации изделий.

Взаимозаменяемость обеспечивает:

– гарантированное качество продукции;

– упрощение процесса сборки;

– предпосылки к широкой специализации и кооперированию заводов;

– возможность организации поточного производства;

– упрощение ремонта, который сводится к простой замене детали или узла.

В целях обеспечения качества продукции, повышения эффективности производства за счет унификации требований к точности, увеличения масштабов выпуска продукции и т.п. используется система допусков и посадок, охватывающая все размерные параметры. Выпускаются отдельные стандарты на предельные отклонения и посадки различных видов соединений, но все они объединяются едиными принципами построения.

Взаимозаменяемость– это свойство независимо изготовленных деталей, узлов машин и приборов обеспечивать возможность беспригоночной сборки (или замены при ремонте) сопрягаемых деталей в сборочную единицу, а сборочных единиц – в изделия при соблюдении предъявляемых к ним требований. Взаимозаменяемыми могут быть и изделия в целом.

Взаимозаменяемость обеспечивается соблюдением в заданных пределах не только геометрических параметров сопрягаемых деталей, но и электрических, гидравлических, пневматических и других физико-механи­чес­ких параметров деталей и сборочных единиц машин, а также соблюдением кинематических и динамических параметров звеньев механизмов и т.п. Взаимозаменяемость может быть полной и неполной (ограниченная).

При полной взаимозаменяемости любая деталь или сборочная единица могут быть поставлены на соответствующие места в машине без дополнительной обработки, пригонки, подбора или регулирования. Полностью взаимозаменяемыми могут быть самые разнообразные детали машин, начиная от самых простых (валики, втулки, пальцы и т.п.) и кончая наиболее сложными (зубчатые колеса, червяки, резьбовые детали, гайки, болты и др.).

Ограниченно взаимозаменяемыми называются такие детали, при сборке или смене которых может потребоваться групповой подбор деталей (селективная сборка), применение компенсаторов, регулирование положения некоторых частей узла, пригонка.

Полностью или ограниченно взаимозаменяемыми могут быть не только детали, но и сборочные единицы, например блоки цилиндров, муфты сцеп­ления, подшипники качения, свечи зажигания к двигателям внутреннего сгорания, агрегатные узлы и т.п.

Тот или иной уровень взаимозаменяемости определяется эксплуатационными требованиями и требованиями рационального производства.

Взаимозаменяемость базируется на стандартизации, нормативно-техническим документом которой является стандарт, устанавливающий комплекс норм, правил и требований к объекту стандартизации.

Вопросы взаимозаменяемости в машиностроении и приборостроении регламентируют следующие системы стандартов: «Основные нормы взаимозаменяемости» (ОНВ) и «Единая система допусков и посадок» (ЕСДП). При разработке стандартов используют стандарты Международной организации по стандартизации ИСО.

Стандарт —это нормативно-технический документ, устанавливающий комплекс норм, правил, требований к объему стандартизации.

Объектами стандартизации являются, например, конкретная продукция, методы, термины, обозначения и т. д.

Одной из наиболее распространенных форм стандартизации является унификация.

Унификация — это рациональное сокращение числа объектов одинакового назначения. Проводится она путем анализа конструкций изделий, их применяемости и приведения близких по конструкции и размерам изделий, их составных частей и деталей к единой оптимальной типовой конструкции.

В России существует «Государственная система стандартизации». В нее входят следующие категории стандартов: государственные (ГОСТы), отраслевые (ОСТы), республиканские (РСТ) и стандарты предприятий (СТП).

При разработке отечественных стандартов учитывают рекомендации международных организаций по стандартизации. Это необходимо для обеспечения взаимозаменяемости деталей и стандартных узлов машин, изготовленных в разных странах, что способствует расширению научно-технических и торговых связей’ между государствами.

Крупнейшей международной организацией в области стандартизации является ИСО (Интернациональная организация по стандартизации). Наряду с международными есть региональные организации по стандартизации, включающие ограниченное число стран. Такой организацией, в которую входит наша страна, является Совет Экономической Взаимопомощи.

2. Размеры. Понятия «отверстие» и «вал». Сопрягаемые и свободные размеры. Предельные отклонения.

Две детали, элементы которых взаимодействуют друг с другом, образуют соединения. Такие детали называются сопрягаемыми деталями, а поверхности соединяемых элементов – сопрягаемыми поверхностями. Размеры, по которым не происходит соединения деталей, называют свободными размерами.

В соединении элементов двух деталей один из них является внутренним (охватывающим), другой – наружным (охватываемым). В системе допусков и посадок гладких соединений наружный элемент условно называется валом, внутренний – отверстием. Термины «отверстие» и «вал» применяют и к несопрягаемым элементам.

Размер– числовое значение величины параметра (диаметр, длина и т.д.) в выбранных единицах измерения.

Размеры подразделяют на номинальные, действительные и предельные.

Номинальный размер – это размер, который служит началом отсчета отклонений и относительно которого определяются предельные размеры. Номинальный размер отверстия обозначают латинской прописной буквой , вала – латинской строчной буквой .

Номинальный размер получают в результате расчетов (на прочность, жёсткость и т.п.) или выбирают из конструктивных и технологических соображений. Применение стандартных номинальных размеров дает большой экономический эффект, так как создает основу при сокращении типоразмеров изделий и деталей, а также технологической оснастки, в первую очередь режущих инструментов, калибров и т.п.

Действительный размер – размер элемента, установленный измерением.

Предельные размеры – два предельно допустимых размера, в пределах которых должен находиться действительный размер детали (рис. 1, а, б).

Больший из двух предельных размеров называется наибольшим предельным размером (Dmax, dmах), меньший – наименьшим предельным размером (Dmin, dmin).

Из этих определений следует, что для изготовления детали ее размер должен задаваться двумя предельно допустимыми значениями: наибольшим и наименьшим.

Отклонением размера называется алгебраическая разность между размером (действительный, предельный) и соответствующим номинальным размерами.

Предельное отклонение – это алгебраическая разность между предельным и номинальным размерами. Различают верхнее и нижнее предельные отклонения, применяя при этом краткие термины – верхнее и нижнее отклонения.

Верхнее отклонение – алгебраическая разность между наибольшим предельным и номинальным размерами. Верхнее отклонение отверстия обозначают буквами ES, вала – es.

Следовательно,

ES = Dmax – Dн; (1)

еs = dmax – dн. (2)

а) б)

Рис. 1. Предельные размеры отверстия и графическое изображение его поля
допуска: а – схема отверстия; б – изображение поля допуска отверстия

Нижнее отклонение – алгебраическая разность между наименьшим предельным и номинальным размерами. Нижнее отклонение отверстия обозначают буквами EI, вала – ei, тогда

EI = Dmin – Dн; (3) еi = dmin – dн.

(4)

Допуск (Т) – разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями.

Стандартный допуск (IT) – допуск, установленный системой допусков и посадок.

Поле допуска – поле, ограниченное наибольшим и наименьшим предельными размерами или верхним и нижним отклонениями и определяемое его положением относительно номинального размера (рис. 1, б),т.е. нулевой линии.

Изобразить отклонения и допуски в одном масштабе с размерами детали практически невозможно. При графическом изображении полей допусков предельные отклонения размеров в условном масштабе откладываются от нулевой линии.

Положение допуска относительно нулевой линии определяется основным отклонением

Основное отклонение – одно из двух предельных отклонений (верхнее или нижнее), ближайшее к нулевой линии.

Основные отклонения обозначаются одной или двумя буквами латинского алфавита, прописными для отверстий (А,В,С, СD.D … ZC) и строчными для валов (а,в,с,сd … zc)

Таким образом, поле допуска обозначается сочетанием буквы, указывающей на положение допуска относительно нулевой линии, с цифрой, говорящей о степени точности – величине допуска.

Нулевая линия – это линия, соответствующая номинальному размеру. Приведем формулы по которым вычисляются предельные размеры и допуски:

– наибольший и наименьший предельные размеры отверстия, соотв.

; (5) (6)

– наибольший и наименьший предельные размеры вала, соотв.

, (7) (8)

– допуск отверстия

(9) или (10)

– допуск вала

(11) или (12)

Примеры обозначения на чертеже полей допусков и схемы их построения для отверстия и

вала, а также значения отклонений и расчет допусков приведены на рис.

Взаимозаменяемость изделий, их частей или других видов продукции определяется их свойством равноценно заменить при использовании любого из множества экземпляров изделий, их частей или иной продукции другим однотипным экземпляром. Следовательно, взаимозаменяемость – это свойство совокупности независимо изготовленных изделий и их частей заменять их во время сборки или ремонта одного экземпляра другим без подгонки при выполнении технических условий и достижении заданных показателей технического устройства. Комплекс научно-технических исходных положений, выполнение которых при конструировании, производстве и эксплуатации обеспечивает взаимозаменяемость деталей, сборочных единиц и изделий, называют принципом взаимозаменяемости.

В современных условиях взаимозаменяемость рассматривают ещё как метод обеспечения заданных эксплуатационных показателей однотипных изделий путём установления допустимых отклонений на их функциональные параметры, определяющие успешность выполнения ими заданных функций: скорость и грузоподъёмность для транспортных средств, точность обработки и производительность для станков и т.д.

При конструировании применение принципа взаимозаменяемости ведёт к повышению качества и снижению себестоимости конструкции на основе стандартизации типоразмеров, обоснованию требований к точности самих элементов конструкции и т.д.

Наиболее широко применяют полную взаимозаменяемость, обеспечивающую возможность беспригонной сборки любых независимо изготовленных с заданной точностью однотипных деталей в сборочные единицы при соблюдении предъявляемых к ним технических требований по всем параметрам качества в заданных пределах.

При полной взаимозаменяемости упрощается процесс сборки, он сводится к простому соединению деталей; появляется возможность точно нормировать технологический процесс сборки во времени, устанавливать необходимый темп работы и применять поточный метод; создаются условия для автоматизации процессов изготовления и сборки изделий; упрощается ремонт изделий.

Одно из основных условий обеспечения взаимозаменяемости – выполнение параметров деталей в заранее установленных пределах, определяемых допусками.

Для измерения изделий с требуемой точностью необходимо иметь надёжные средства контроля размеров, позволяющие проверить правильность выполнения заданных допусков.

Поэтому важными задачами в области обеспечения взаимозаменяемости являются разработка средств и методов измерений, выбор и назначение соответствующих измерительных приборов. Основными требованиями, предъявляемыми к техническим измерениям, являются точность, производительность и возможность предупреждения появления брака.

Основные методы обеспечения взаимозаменяемости

Понятие о взаимозаменяемости, виды взаимозаменяемости

Взаимозаменяемостью называется свойство одних и тех же деталей, узлов или агрегатов машин и т. д., позволяющее устанавливать детали (узлы, агрегаты) в процессе сборки или заменять их без предварительной подгонки при сохранении всех требований, предъявляемых к работе узла, агрегата и конструкции в целом.

Различают 5 видов взаимозаменяемости:

Полная – взаимозаменяемость всех деталей и узлов прибора

Неполная– вз части детали или сборочных единиц детали. Характеризуется коэф вз – ти (должен стремиться к 1). Это отношение трудоемкости вз – мых деталей к общей трудоемкости изготовления изделий.

Внутренняя – вз – ть отдельных или всех деталей сборочной единицы

Внешняя – вз – ть самих сборочных единиц

Функциональная – вз – ть, при которой точность геометрических и других параметров рассчитывается по зависимостям связывающих их отклонение с допустимыми отклонениями эксплуатационных показателей в целом.

Подробнее:

Взаимозаменяемостью изделий (машин, приборов, механизмов и др.), их частей или других видов продукции (сырья, материалов) называется их свойство равноценно заменять при использовании любого множества изделий, их частей или иной продукции другим однотипным экземпляром. В общем случае различают взаимозаменяемость:

– полную;

– частичную (не полную).

Наиболее часто применяют полную взаимозаменяемость,которая обеспечивает совместимость беспригонной сборки или замены при ремонте любых независимо изготовленных с заданной точностью деталей или изделий. Полная взаимозаменяемостьвозможна только тогда, когда размеры, форма, элементные и другие качественные и количественные параметры деталей и изделий находятся в заданных пределах и удовлетворяют установленным техническим требованиям. Уровень взаимозаменяемости производства обычно характеризуется коэффициентом взаимозаменяемости КВ, равным отношению трудоемкости изготовления и сборки взаимозаменяемых деталей узлов, конструкций или их частей QВ к общей трудоемкости изготовления сборочной единицы QΣ. Величина КВ изменяется в пределах

.

При этом выполнение установленных требований к точности деталей, узлов, сборных единиц или их элементов является важнейшим и определяющим условием обеспечения взаимозаменяемости.

Взаимозаменяемыми могут быть детали, сборные единицы и изделия в целом. В первую очередь такими должны быть детали и сборные единицы, от которых зависит надежность и другие эксплуатационные свойства изделия. В обязательном порядке это требование распространяется на запасные части изделия (ЗИП).


Свойства собираемости и возможности равноценной замены любого экземпляра взаимозаменяемой и сборочной единицы любым другим сборочным экземпляром позволяет изготовлять детали в одних цехах предприятия, а собирать из них изделия в других цехах этого предприятия или даже других профильных предприятиях. При полной взаимозаменяемости процесс сборки сводиться к соединению деталей преимущественно рабочими не высокой квалификации. Поэтому появляется возможность точно нормировать процесс сборки по времени, устанавливать необходимый темп работы, применять поточный метод сборки и создавать условия для автоматизации, специализирования и кооперирования производственных процессов.

Частичная (неполная) взаимозаменяемость применяется в тех случаях, когда не возможна сборка изделия при пригонки или регулировки входящих в него деталей, узлов или сборочных единиц. Такая взаимозаменяемость широко используется в мелкосерийном и серийном производствах. Например, при сборке металлорежущего станка осуществляется пригонка и регулировка устанавливаемых на станине суппорта или задней бабки. Коэффициент взаимозаменяемости КВ в этом случае ниже, чем при полной взаимозаменяемости.

С коэффициентом взаимозаменяемости КВ тесно связан коэффициент унификации (стандартизации) производства Ку, определяемый как отношение трудоемкости сборки унифицированных (стандартных) деталей Qcт к трудоемкости сборки оригинальных деталей Qорг:
. (1)
Применение той или иной взаимозаменяемости на производстве обусловлено многими факторами, основными из которых являются: тип производства, вид выпускаемой продукции, степень развитости производственных отношений, культура производства.


В общем случае с повышением КВ эксплуатационные характеристики изделия улучшаются, так как создаются условия для быстрой и эффективной замены или восстановления деталей, узлов или сборочных единиц изделия в период проведения ремонтов, технического обслуживания и регламентных работ по системе планово-предупредительного ремонта (ППР). Однако в индивидуальном и мелкосерийном производствах эта связь проявляется слабо в связи с ограниченным количеством выпускаемых изделий. Наибольшее влияние КВ на эксплуатационные свойства оказывает в массовом и крупносерийном производстве. Влияние КВ на эксплуатационные свойства изделий в большой степени зависит от вида изделия: наибольшее – в радиоэлектронной промышленности, несколько меньше – в приборостроении, еще меньше – в машиностроении.

Полную взаимозаменяемость экономически целесообразно применять для деталей, изготовленных в массовом и серийном производствах и имеющих точность не выше шестого квалитета, а также для сборочных единиц и изделий, состоящих из небольшого числа деталей, для которых несоблюдение заданныхзазоров или натягов при сборке изделий в машино- и приборостроении недопустимо даже у части деталей.

Современная промышленность не может развиваться без широкой кооперации, для которой основой является взаимозаменяемость. Разработка эффективных технологических процессов и их практическое осуществление также невозможно без учета взаимозаменяемости деталей, узлов и конструкций. Качество изделий и его контроль осуществляется на основе приемов, выработанных практикой использования различных видов взаимозаменяемости. Таким образом, взаимозаменяемость выделилась в самостоятельное научно-производ-ственное направление во многих отраслях промышленности, играющее определяющую роль в достижении высокого качества выпускаемой продукции и обеспечения ее конкурентоспособности на мировом рынке.

Помимо полной и неполной взаимозаменяемости существуют следующие виды взаимозаменяемости деталей и сборочных единиц:

^ Внешняя взаимозаменяемость – это взаимозаменяемость покупных кооперируемых изделий (монтируемых в другие изделия) и сборочных единиц по эксплуатационным показателям, а также по размерам и форме присоединительных плоскостей. Например, в электродвигателе внешнюю взаимозаменяемость обеспечивают по частоте вращения приводящего вала, а также по размерам присоединительных плоскостей. В подшипниках качения внешняя взаимозаменяемость обеспечивается по наружному диаметру наружного кольца, устанавливаемого в корпусе изделия, и внутреннему диаметру внутреннего кольца, устанавливаемого на валу, а также по точности вращения и восприятию нагрузок.

2. ^ Внутренняя взаимозаменяемость – распространяется на детали, сборочные единицы, изделия, изготавливаемые на конкретном предприятии или его подразделении. Например: при селективной сборке подшипников качения внутреннюю групповую взаимозаменяемость имеют тела качения и кольца.

При рассмотрении вопроса о взаимозаменяемости изделий вводится понятие совместимости– свойство объектов занимать свое место в сложном готовом изделии и выполнять требуемые функции при совместной или последовательной работе этих объектов в заданных эксплуатационных условиях. При этом под объектом понимают автономные блоки, приборы или другие изделия, входящие в более сложные изделия.

3. ^ Функциональная взаимозаменяемость – обеспечение взаимозаменяемости машин и других изделий по оптимальным эксплуатационным показателям, что является основным принципом взаимозаменяемости изделий и машин в целом. Поэтому в более обобщенном представлении взаимозаменяемость, при которой обеспечивается работоспособность изделий или их потребительские свойства с оптимальными и стабильными (в заданных пределах) во времени эксплуатационными показателями или оптимальными показателями качества функционирования, называютфункциональной.

При этом функциональными являются геометрические, электрические, механические и другие параметры, влияющие на надежность или экономические показатели машин и других изделий, или служебные функции сборочных единиц. Например: от зазора между поршнем и цилиндром (функциональный показатель, определяемый допуском на размер деталей) зависит мощность двигателей (эксплуатационный показатель). Эти параметры названы функциональными, так как существует их связь со служебными функциями сборочных единиц и эксплуатации заданного изделия.

Такая связь может быть как закономерной (см. выше), так и случайной. Чтобы получить наибольшую эффективность взаимозаменяемости, т.е. добиться функциональной взаимозаменяемости, необходимо при конструировании, производстве и эксплуатации машин и изделий учитывать комплекс научно-технических исходных положений, которые объединяются общим понятием – принципиальная взаимозаменяемость – и которые обусловлены «жизненным» путем изделия.

Глава 2. Взаимозаменяемость деталей, узлов и механизмов

Структурная модель детали

Машины и механизмы состоят из большого количества деталей, узлов и механизмов, взаимодействующих в процессе эксплуатации друг с другом. Каждая из деталей в узле имеет определенное назначение и должна обладать строго определенными размерами, характеристиками.

Детальпредставляет собой определенные комбинации геометрических тел, ограниченных поверхностями простейших форм – плоскими, цилиндрическими, коническими, сферическими и т.п. (рис 2.1). Таких комбинаций может быть бесконечное множество, а если учесть, что они характеризуются еще и размерами, то можно представить сколь многообразна на практике гамма деталей (рис 2.2). К деталям относят изделия, которые изготовлены из однородного по наименованию и марке материала без применения сборочных операций (например, втулка, изготовленная из одного куска металла, валик – из стального прутка, пластина – из медного листа и т.п.).

Простейшие геометрические тела, составляющие деталь, называются их элементами (рис.2.3).

Для выполнения определенных функций у деталей предусматриваются различные формы поверхностей.Они могут быть цилиндрическими, плоскими, коническими, резьбовыми, эвольвентными, шлицевыми и др. Кроме того, поверхности бывают сопрягаемые и несопрягаемые. Сопрягаемые– это поверхности, по которым детали соединяются в сборочные единицы, а сборочные единицы – в механизмы (поверхности 1,2,3 рис.2.4). Несопрягаемые или свободные – это конструктивно необходимые поверхности, не предназначенные для соединения с поверхностями других деталей (поверхности 4,5,6 рис.2.4).

При проектировании машин и механизмов конструкторы исходят из того, что каждая деталь должна иметь определенную форму, размеры и занимать определенное место в узле, исходя из служебного назначения этой машины или механизма. Это так называемые номинальные значения формы, размера и положения детали. И поверхности, которые определяют форму детали, в этом случае также являются номинальными.

Другими словами: номинальные поверхности и их расположение задаются при проектировании исходя из функционального назначения детали.


Для того чтобы систематизировать многообразие форм деталей все возможные варианты поверхностей разделили на: внутренние (цилиндрические, конические, поверхности с параллельными и не параллельными поверхностями) и назвали их охватывающими, и наружные – охватываемыми.

В соответствии с этим были введены понятия: вал и отверстие.

Вал – это термин, применяемый для обозначения наружных (охватываемых) элементов деталей 1 и их обозначают строчными буквами d,a,c (рис.2.5).

Отверстие –это термин, применяемый для обозначения внутренних (охватывающих) элементов деталей 2 и их обозначают прописными буквами D,A,C (рис.2.5).

Как уже говорилось выше, машины и механизмы состоят из деталей, которые находятся во взаимодействии друг с другом. А это возможно, если они либо соприкасаются друг с другом, либо соединяются. Детали, элементы которых входят друг в друга, образуют соединение. Такие детали называются сопрягаемыми деталями, а поверхности соединяемых элементов – сопрягаемыми поверхностями. В зависимости от формы сопрягаемых поверхностей соединения могут быть (рис.2.6): цилиндрическими (а), коническими (б), резьбовыми (в), шлицевыми (г), шпоночными (д), сварными (е), заклепочными (ж) и т.п.

Для числовой оценки значений линейных величин (диаметров, длин, высот и т.п.) необходимо их выразить в виде размерав определенных единицах измерения. В машиностроении и приборостроении все размеры в технической документации задают и указывают в миллиметрах.

Основные понятия о взаимозаменяемости деталей,

Узлов и механизмов.

Нарушение взаимного положения поверхностей и осей, а, следовательно, и деталей в машине или в узле, приводит к изменению нормальных условий работы машины или агрегата, влияет на их надежность и качество. С другой стороны известно, что в процессе эксплуатации детали изнашиваются, выходят из строя и их приходится время от времени удалять из узла и ремонтировать, либо на место износившейся устанавливать новую деталь. Для того чтобы произвести равноценную замену при ремонте необходимо, чтобы детали были бы изготовлены по единым нормативным документам и соответствовали бы требованиям взаимозаменяемости. Что же такое взаимозаменяемость?

Взаимозаменяемость – это свойство изделий (машин, приборов, механизмов), их составных частей равноценно заменять при эксплуатации любой экземпляр изделия, его составную часть другим однотипным экземпляром без предварительной подгонки. Для машиностроения и приборостроения это общее определение может быть конкретизировано. Взаимозаменяемость – это свойство независимо изготовленных с заданной точностью деталей, узлов и агрегатов машин, позволяющее устанавливать эти составные части в процессе сборки в машину или заменять их при ремонте при сохранении как функциональных характеристик машины, так и ее надежности и качества.

Различают следующие виды взаимозаменяемости.

Полная взаимозаменяемость – это такая взаимозаменяемость, при которой обеспечивается возможность беспригоночной сборки (или замене при ремонте) любых независимо изготовленных с заданной точностью однотипных деталей. Такой вид взаимозаменяемости возможен только, когда размеры, форма, механические, электрические и другие качественные и количественные характеристики деталей и сборочных единиц после изготовления находятся в заданных пределах, и собранные изделия соответствуют техническим требованиям.

В условиях полной взаимозаменяемости существенно упрощается процесс сборки, который в основном сводится к простому соединению деталей, расширяются возможности применения поточного метода изготовления деталей, автоматизации процесса изготовления и сборки изделий, упрощения ремонта машин.

Неполная взаимозаменяемость – это такая, при которой для обеспечения требуемой точности изделия предусматриваются некоторые конструктивные особенности узла (регулировочные элементы, компенсаторы) или вводятся дополнительные технологические операции при сборке или ремонте (доводка, пригонка, так называемая селективная сборка или групповой подбор деталей). Неполная взаимозаменяемость осуществляется не по всем, а только по отдельным геометрическим или другим параметрам.

Различают так же внутреннюю, внешнюю и функциональную взаимозаменяемости.

Внутренняя взаимозаменяемость – взаимозаменяемость всех или отдельных деталей, составляющих сборочные единицы, механизмы входящие в изделие. Например, в подшипниках качения внутреннюю взаимозаменяемость имеют кольца и тела качения (шарики, ролики, иглы).

Внешняя взаимозаменяемость – взаимозаменяемость сборочных единиц, а также кооперируемых и покупных изделий (монтируемых в более сложные изделия) по размерам и форме присоединительных поверхностей, эксплуатационным параметрам. Для подшипников качения — это такие параметры, как размеры наружного и внутреннего колец, точность вращения; для электродвигателей — мощность, частота вращения вала, размеры и форма присоединительных поверхностей.

Функциональная взаимозаменяемость – форма взаимозаменяемости, при которой обеспечиваются не только сборка и замена при ремонте любых деталей, узлов и механизмов, но и их эксплуатационные показатели и функциональные параметры. Например, взаимозаменяемое зубчатое колесо, кроме способности без подгонки занять свое место в узле, должно передавать заданный крутящий момент, иметь определенное передаточное отношение и обладать заданным ресурсом работы. Функционально взаимозаменяемый бензонасос автомобиля, кроме соответствующих присоединительных размеров, должен иметь заданную производительность, развивать определенную величину давления и иметь соответствующий ресурс.

Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

Добавить комментарий

Закрыть меню