Бериллий металл или неметалл?

Важнейшие соединения:

Оксид бериллия, BeO встречается в природе в виде редкого минерала бромеллита. Получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600°С.
Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С — лишь 0,18%. Оксид бериллия, прокаленный не выше 500°С, легко взаимодействует с кислотами, труднее — с растворами щелочей, а прокаленный выше 727° С — лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.
Оксид бериллия обладает очень высокой теплопроводностью.

Считается одним из лучших огнеупорных материалов, используется для изготовления тиглей и других изделий
Гидроксид бериллия, Be(OH)2 — полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства: Be(OH)2 + 2КOH = К2, Be(OH)2 + 2HCl = BeCl2 + 2H2O.
Действием на гидроксид бериллия Be(OH)2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be4O(CH3COO)6.
Галогениды бериллия, бесцв. крист. вещества, расплываются на воздухе, поглощая влагу. Для получения безводного хлорида используется реакция 2BeO + CCl4 = 2BeCl2 + CO2
Подобно хлориду алюминия BeCl2 является катализатором в реакции Фриделя – Крафтса. В растворах подвергается гидролизу

Бериллаты, в концентрированных растворах и расплавах щелочей присутствуют бериллаты состава M2BeO2, M3BeO4, в разбавленных растворах гидроксобериллаты M2. Легко гидролизуются до гидроксида бериллия.

Гидрид бериллия, BeH2 — полимерное вещество, его получают реакцией: BeCl2 + 2LiH = BeH2 + 2LiCl
Карбид бериллия, Be2С — образуется при взаимодействии бериллия с углеродом. Подобно карбиду алюминия гидролизуется водой с образованием метана.

Применение:

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллиевые бронзы (Cu и 3-6% Be) – материал для пружин c большой устойчивостью к механической усталости и совершенно не дающих искр при механических ударах.
Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов.
В смесях с некоторыми a-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a-частиц возникают нейтроны: 9Ве(a,n)12C.
Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции, однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны, канцерогенны (ПДК 0,001 мг/м3).

Рудакова Анна Валерьевна
ХФ ТюмГУ, 561 группа.

БЕРИЛЛИЕВЫЕ СПЛАВЫ, сплавы на основе бериллия (Be). Промышленное применение началось в 1950-х годах. Бериллиевые сплавы содержат 5-80% Be, имеют малую плотность, большой диапазон значений модуля упругости, прочности и пластичности, сравнительно небольшую чувствительность к поверхностным дефектам, коррозионностойки. Преимущества бериллиевых сплавов по сравнению с металлическим Be обеспечиваются введением легирующих добавок. Однако многие химические элементы (Fe, Cr, Ni и др.), растворяясь в Be, сильно искажают его кристаллическую решётку, снижают пластичность сплава, увеличивают его склонность к хрупкому разрушению. Повысить пластичность Be можно легированием Al, Mg, Si, Cu, Sn и др., которые образуют с Be механические смеси с минимальной взаимной растворимостью. Структура сплава Ве-Al (в Be растворяется 4-5% Al) состоит из смеси фаз с резко выраженной разнородностью: твёрдой и прочной бериллиевой фазой, представляющей собой твёрдый раствор Al в Be, и пластичной, с низкой прочностью алюминиевой фазой. Промышленные сплавы системы Be-Al (24—43% Al), получившие название «локеллой», разработаны американским концерном «Локхид». Эти сплавы имеют высокий модуль упругости (жёсткость), по сравнению с Be более пластичны, менее чувствительны к поверхностным дефектам. Для сплава с 30% Al модуль упругости составляет 214 ГПа, предел прочности — 550 МПа, относительное удлинение — 4,5%. Свойства сплавов системы Ве-Al существенно улучшает их легирование магнием, который, растворяясь в алюминиевой фазе, повышает её прочность. Отечественные бериллиевые сплавы системы Al-Be-Mg (АБМ), содержащие 10-70% Be и 2- 9% Mg, разработаны в 1955-60 годах (И. Н. Фридляндер, Р. Е. Шалин, А. В. Новосёлова и др.). Сплавы АБМ в зависимости от содержания Be имеют плотность 2000-2400 кг/м3, модуль упругости 150-300 ГПа, характеризуются высокой удельной прочностью и жёсткостью, повышенным сопротивлением акустическим и ударным нагрузкам, малой чувствительностью к концентраторам напряжений. Наиболее высокой прочностью обладают сплавы Ве-Al, легированные совместно Mg и Zn (сплавы АБМЦ). Введение Li в бериллиевые сплавы позволяет уменьшить содержание Be, сохраняя высокие механические и технологические свойства АБМ и АБМЦ. Повышение прочности бериллиевых сплавов может достигаться путём дисперсионного упрочнения. Например, сплав системы Ве-ВеО (до 4% ВеО), подвергшийся такой обработке, выдерживает нагрузку в 40 МПа в течение 1000 часов при 600 °С. Материалы на основе интерметаллидных соединений Be с Nb, Та, Zr отличаются ещё большей жаропрочностью, они способны работать длительное время при 1100-1550 °С и короткое время при 1700 °С.

Реклама

Изделия и полуфабрикаты из бериллиевых сплавов изготавливают в основном методами порошковой металлургии, реже литьём. Изделия из высокопрочных дисперсно-упрочнённых бериллиевых сплавов получают обработкой давлением горячепрессованных заготовок при 1010-1175 °С. Бериллиевые сплавы применяют в качестве конструкционных материалов в авиа- и ракетостроении (например, обтекатели сверхзвуковых самолётов, тормозные диски самолётных шасси, носовые конусы и оболочки ракет), в точном приборостроении (гироскопические устройства, системы наведения и управления ракетами) и др.

Из-за высокой токсичности Be работы с бериллиевыми сплавами должны производиться в строгом соответствии с установленными для них санитарными нормами и правилами гигиены труда.

Лит.: Папиров И. И. Бериллий в сплавах. М., 1986; Строение и свойства авиационных материалов / Под редакцией А. Ф. Белова, В.

В. Николаенко. М., 1989.

Р. Е. Шалин.

БЕРИЛЛИЙ, Be (лат. Beryllium * а. berillium; н. Beryllium; ф. beryllium; и. berilio), — химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122. Имеет один стабильный изотоп 9Ве. Открыт в 1798 французским химиком Л. Вокленом в виде оксида ВеО, выделенного из берилла. Металлический бериллий независимо друг от друга получили в 1828 немецкий химик Ф. Вёлер и французский химик А. Бюсси.

Свойства бериллия

Бериллий — лёгкий светло-серый металл. Кристаллическая структура а-Be (269-1254°С) гексагональная; Я-Be (1254-1284°С) — объёмноцентрированная, кубическая. Плотность 1844 кг/м3, t плавления 1287°С, t кипения 2507°С. Обладает наиболее высокой из всех металлов теплоёмкостью 1,80 кДж/кг • К, высокой теплопроводностью 178 Вт/м • К при 50°С, низким удельным электрическим сопротивлением (3,6-4,5) • 10 Ом • м при 20°С; коэффициентом термического линейного расширения 10,3-13,1 • 10-6 град-1 (25- 100°С). Бериллий — хрупкий металл; ударная вязкость 10-50 кДж/м2. Бериллий обладает малым поперечным сечением захвата тепловых нейтронов.

Химические свойства бериллия

Бериллий — типичный амфотерный элемент с высокой химической активностью; компактный бериллий устойчив на воздухе благодаря образованию плёнки ВеО; степень окисления берилля +2.

Соединения бериллия

При нагревании соединяется с кислородом, галогенами и другими неметаллами. С кислородом образует оксид ВеО, с азотом — нитрид Be3N2, с углеродом — карбид Ве2С, с серой — сульфид BeS. Растворим в щелочах (с образованием гидрооксобериллатов) и большинстве кислот. При высоких температурах бериллий взаимодействует с большинством металлов, образуя бериллиды. Расплавленный бериллий взаимодействует с оксидами, нитридами, сульфидами, карбидами. Из соединений бериллий наибольшее промышленное значение имеют ВеО, Ве(ОН)2, фторбериллаты, например Na2BeF4 и др. Летучие соединения бериллий и пыль, содержащая бериллий и его соединения, токсичны.

Бериллий — редкий (кларк 6•10-4%), типично литофильный элемент, характерный для кислых и щелочных пород. Из 55 собственных минералов бериллий 50% принадлежит к силикатам и бериллийсиликатам, 24% — к фосфатам, 10% — к окислам, остальные — к боратам, арсенатам, карбонатам. Близость потенциалов ионизации определяет сродство бериллия и цинка в щелочной среде, так что они одновременно находятся в некоторых гидротермальных месторождениях, а также входят в состав одного и того же минерала — гентгельвина.

В нейтральных и кислых средах пути миграции бериллия и цинка резко расходятся. Некоторое рассеивание бериллия в горных породах определяется его химическим сходством с Al и Si. Особенно близки эти элементы в виде тетраэдрических группировок ВеО46-, AlO45- и SiO44-. В гранитах проявляется большее сродство бериллия к кремнию, а в щелочных породах — к алюминию. Т. к. энергетически более выгодно замещение Аl3+IV на Ве2+IV, чем Si4+IV на Ве2+IV, то изоморфное рассеивание бериллия в щелочных породах, как правило, выше, чем в кислых. Геохимическая миграция бериллия связана с фтором, с которым он образует весьма устойчивые комплексы BeF42-, BeF31-, BeF20, BeF1+. При повышении температуры и щёлочности эти комплексы легко гидролизуются до соединений Be(OH)F0, Be(OH)2F1-, в виде которых бериллий мигрирует.

Об основных генетических типах месторождений бериллия и схемы обогащения см. в ст. Бериллиевые руды. В промышленности металлический бериллий получают термическим восстановлением BeF2 магнием, бериллий высокой чистоты — переплавкой в вакууме и вакуумной дистилляцией.

Применение бериллия

Бериллий и его соединения применяют в технике (свыше 70% общего потребления металла) как легирующую добавку к сплавам на основе Cu, Ni, Zn, Al, Pb и других цветных металлов. В ядерной технике Be и ВеО используют в качестве отражателей и замедлителей нейтронов, а также в качестве источника нейтронов. Малая плотность, высокая прочность и жаростойкость, большой модуль упругости и хорошая теплопроводность позволяют применять бериллий и его сплавы как конструкционный материал в авиа-, ракетостроении и космической технике. Сплавы бериллия и оксида бериллия отвечают требованиям прочности и коррозионной устойчивости в качестве материалов для оболочек твэлов. Бериллий служит для изготовления окон рентгеновских трубок, нанесения твёрдого диффузионного слоя на поверхность стали (бериллизация), в качестве присадок к ракетному топливу. Потребителем Be и ВеО являются также электротехника и радиоэлектроника; ВеО используют как материал корпусов, теплоотводов и изоляторов полупроводниковых приборов. Благодаря высокой огнеупорности, инертности по отношению к большинству расплавленных металлов и солей оксид бериллий применяется для изготовления тиглей и специальной керамики.

Свойства камней

Описание

Бериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.

Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли «глюциний» (от греч. glykys — сладкий) или «глиций». Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные — в начале 30-х годов 20 века.

Распространение бериллия в природе. Бериллий — редкий элемент. Бериллий — типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические свойства. Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

Химические свойства

В химических соединениях Бериллий 2-валентен (конфигурация внешних электронов 2S2). Бериллий обладает высокой химической активностью, но компактный металл устойчив на воздухе благодаря образованию тонкой и прочной пленки оксида ВеО. При нагревании выше 800 oС быстро окисляется. С водой до 100 oС Бериллий практически не взаимодействует. Легко растворяется в плавиковой, соляной, разбавленной серной кислотах, слабо реагирует с концентрированной серной и разбавленной азотной кислотами и не реагирует с концентрированной азотной. Растворяется в водных растворах щелочей, образуя соли бериллаты, например Na2BeO2. При комнатной температуре реагирует с фтором, а при повышенных — с других галогенами и сероводородом. Бериллий взаимодействует с азотом при температуре выше 650 оС с образованием нитрида Be3N2 и при температуре выше 1200 оС с углеродом, образуя карбид Ве2С. С водородом практически не реагирует во всем диапазоне температур. Гидрид Бериллия получен при разложении бериллийорганических соединений и устойчив до 240 оС. При высоких температурах Бериллий взаимодействует с большинством металлов, образуя бериллиды; с алюминием и кремнием дает эвтектические сплавы. Растворимость примесных элементов в Бериллии чрезвычайно мала. Мелкодисперсный порошок Бериллия сгорает в парах серы, селена, теллура. Расплавленный Бериллий взаимодействует с большинством оксидов, нитридов, сульфидов и карбидов. Единственно пригодным материалом тиглей для плавки Бериллия служит оксид бериллия.

Гидрооксид Be(OH)2 — слабое основание с амфотерными свойствами. Соли Бериллия сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, их водные растворы вследствие гидролиза имеют кислую реакцию. Фторид BeF2 с фторидами щелочных металлов и аммония образует фторбериллаты, например Na2BeF4, имеющие большое промышленное значение. Известен ряд сложных бериллийорганических соединений, гидролиз и окисление некоторых из них протекают со взрывом.

Получение

В промышленности металлический Бериллий и его соединения получают переработкой берилла в гидрооксид Ве(ОН)2 или сульфат BeSO4. По одному из способов, измельченный берилл спекают с Na2SiF6, образующиеся фторбериллаты натрия Na2BeF4 и NaBeF3 выщелачивают из смеси водой; при добавлении к этому раствору NaOH в осадок выпадает Ве(ОН)2.

По другому способу, берилл спекают с известью или мелом, спек обрабатывают серной кислотой; образующийся BeSO4 выщелачивают водой и осаждают аммиаком Ве(ОН)2. Более полная очистка достигается многократной кристаллизацией BeSO4, из которого прокаливанием получают ВеО. Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведется с целью получения BeF2 или ВеCl2.

Металлический Бериллий получают восстановлением BeF2 магнием при 900-1300°С или электролизом ВеСl2 в смеси с NaCl при 350 oС.

Полученный металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в небольших количествах — зонной плавкой, применяют также электролитическое рафинирование.

Из-за трудностей получения качественных отливок заготовки для изделий из Бериллия готовят методами порошковой металлургии. Бериллий измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 oС. Прутки, трубы и другие профили получают выдавливанием при 800-1050 oС (горячее выдавливание) или при 400-500 oС (теплое выдавливание). Листы из Бериллия получают прокаткой горячепрессованных заготовок или выдавленных полос при 760-840 oС. Применяют и других виды обработки — ковку, штамповку, волочение. При механической обработке Бериллия пользуются твердосплавным инструментом.

Добавить комментарий

Закрыть меню