Белки и ферменты

Многообразие функций белков

Вопрос 1. Чем объясняется многообразие функций белков?
Уникальные свойства белков заложены в колоссальном разнообразии пространственного строения их молекул. Это разнообразие белков определяется огромным числом возможных сочетаний аминокислотных остатков в длинных, состоящих, как правило, из нескольких сотен остатков, полипептидных цепях белков.

Как известно, в состав белков может входить 20 видов аминокислот. Белки образуют различные соединения с различными веществами. Кроме того, белки могут иметь пространственную структуру молекулы. Установлено, что белки могут иметь различные размеры и форму. Многие белки содержат в своём составе такие металлы, как железо, цинк, медь и др. Все это способствует тому, что белки выполняют множество функций.

Вопрос 2. Какие функции белков вам известны?
1. Строительная (пластическая) функция. Белки являются непременным компонентом всех биологических мембран, составляют основу цитоскелета, входят в состав соединительных тканей, волосяного покрова, т.е. обеспечивают «строительную» функцию.
2. Ферментативная функция. Обладая, прежде всего, ярко выраженной каталитической способностью, они в качестве ферментов детерминируют интенсивность всех метаболических процессов в клетке и организме в целом. Белки служат ферментами, т. е. биологическими катализаторами. Примером может служить амилаза, расщепляющая крахмал до моносахаридов; пепсин, расщепляющий белки на пептиды.
3. Сократительная (двигательная) функция). Все виды движения, начиная с движений жгутиков бактерий и кончая движениями пальцев пианиста, обеспечиваются работой «белковых моторов» (сократительные белки). Сократительные свойства белков актина и миозина лежат в основе работы мышц.
4. Транспортная функция. Белки участвуют в транспорте молекул и ионов в пределах организма (гемоглобин переносит кислород из легких к органам и тканям, альбумин сыворотки крови участвует в транспорте жирных кислот).
5. Защитная функция. Она заключается в предохранении организма от повреждений и вторжения чужеродных белков и бактерий. Белки-антитела, вырабатываемые лимфоцитами, создают защиту организма от чужеродной инфекции, тромбин и фибрин участвуют в образовании тромба, тем самым, помогая организму избежать больших потерь крови.
6. Регуляторная функция. Белки-гормоны участвуют в регуляции активности клетки и всех жизненных процессов организма. Так, инсулин регулирует уровень сахара в крови и поддерживает его на определенном уровне.
7. Сигнальная функция. Белки формируют ионные каналы и осуществляют восприятие, трансформацию и передачу разнообразных внешних сигналов (белки-рецепторы).
8. Энергетическая функция. Она реализуется белками крайне редко. При полном расщеплении 1г белка способно выделиться 17,6кДж энергии. Однако белки для организма — очень ценное соединение. Поэтому расщепление белка происходит обычно до аминокислот, из которых строятся новые полипептидные цепочки. Они же осуществляют иммунологическую защиту от чужеродных соединений и патогенных микроорганизмов (защитные белки-иммуноглобулины).

Вопрос 3. Какую роль играют белки-гормоны?
Белки-гормоны контролирует физиологическую активность тканей и органов и всех жизненных процессов всего организма. Так, в организме человека соматотропин участвует в регуляции роста тела, инсулин поддерживает на постоянном уровне содержание глюкозы в крови.

Вопрос 4. Какую функцию выполняют белки-ферменты?
Белки-ферменты играют роль катализаторов, т. е. ускоряют химические реакции в сотни миллионов раз. Ферменты обладают строгой специфичностью по отношению к веществу, вступающему в реакцию. Каждая реакция катализируется своим ферментом.

Вопрос 5. Почему белки редко используются в качестве источника энергии?
Мономеры белков аминокислоты — ценное сырье для построения новых белковых молекул. По-этому полное расщепление полипептидов до неорганических веществ происходит редко. Следовательно, энергетическая функция, заключающаяся в выделении энергии при полном расщеплении, выполняется белками только в исключительных случаях, когда организм испытывает недостаток жиров или углеводов.

Белки в живых организмах выполняют множество важных функций. Поэтому в организмах существует множество различных белков.

Ферментативная функция белков заключается в том, что они служат катализаторами различных химических реакций, протекающих в организме. Ферментативную функцию по-другому называют каталитической. При катализе происходит ускорение химических реакций, причем это ускорение может быть даже в миллионы раз.

Белков-ферментов тысячи, каждый из них обслуживает свою химическую реакции или группу схожих реакций. По типу обслуживаемых реакций ферменты делят на классы. Например, оксидоредуктазы катализируют окислительно-восстановительные реакции, гидролазы обеспечивают гидролиз химических связей и т. д. Реакцию катализирует не вся молекула фермента, а только ее так называемый активный центр. Он включает часть молекулы, которая связывает субстрат (молекулу, которая подвергается превращению), и несколько аминокислот (часто не вместе расположенных), которые обеспечивают саму реакцию.

Белки выполняют структурную функцию. Они входят в состав клеточных мембран и органоидов, межклеточного вещества (белки коллаген и эластин), волос, ногтей и т. п. (кератин).

Двигательная функция белков заключается в сокращении мышц (актин и миозин), обеспечении движения клеток, их ресничек и жгутиков.

Существуют белки, которые обеспечивают перенос различных веществ как внутри клетки, так и по всему организму. Такие белки обеспечивают транспортную функцию. Они легко связываются с субстратом, когда его концентрация высока, и легко высвобождают его при низкой концентрации. К транспортным белкам относится гемоглобин. В легких он связывает кислород и высвобождает углекислый газ, а в тканях наоборот.

Ряд белков, входящих в состав мембран клеток, обеспечивают транспорт малых молекул через мембрану. Такой транспорт может быть как пассивным (белки-каналы), так и активным (белки-переносчики).

Регуляторная и сигнальная функции белков разнообразны.

Многие внутриклеточные процессы (клеточный цикл, транскрипция и трансляция, активация или подавление активности других белков и т. д.) регулируются белками.

Многие гормоны — это белки, переносимые кровью. Когда гормон связывается с определенным рецептором, то клетка получает сигнал, в результате чего в ней запускается ответная реакция. Гормоны регулируют концентрации веществ, процесс роста, период размножения и др.

Клетки взаимодействуют между собой посредством сигнальных белков, которые передаются через межклеточное вещество. Например, такие сигналы могут стимулировать или подавлять рост клеток. Таким образом обеспечивается согласованность работы клеток той или иной системы органов.

Выделяют рецепторную функцию белков. Белки-рецепторы могут находиться как в цитоплазме, так и в мембранах. Когда на рецептор действует химическое вещество или физический стимул (свет, давление и др), то он изменяется. Это изменение молекулы передается в другие части клетки, посредством катализа определенной реакции, прохождения ионов или связывания молекул-посредников.

Защитная функция белков также весьма разнообразна. Коллаген и кератин обеспечивают не только структурную функцию, но и физическую защиту организма. Также физически организм защищают фибриногены и тромбины, свертывающие кровь в местах ранения (контакта с воздухом).

Белки обеспечивают химическую защиту, связывая и расщепляя чужеродные токсины или вырабатывая свои (для защиты от других организмов).

Защитными белками являются антитела, которые обезвреживают микроорганизмы и чужеродные белки. Так белки обеспечивают иммунную защита.

Если в организме возникает дефицит углеводов и жиров, то белки, распадаясь до конечных продуктов, могут выполнять энергетическую функцию.

Белки могут запасаться как источник энергии и источник аминокислот (например, в яйцеклетках). Это запасающая функция белков.

Образование

Биологическое значение и свойства ферментов

Без этих молекул живой организм не смог бы функционировать. Все процессы жизнедеятельности слажено работают благодаря энзимам. Главная функция белков-ферментов в организме – регулирование обмена веществ. Без них невозможен нормальный метаболизм. Регуляция активности молекул происходит под действием активаторов (индукторов) или ингибиторов. Контроль действует на разных уровнях синтеза белков. Он также «работает» в отношении уже готовой молекулы.

Основное свойства белков-ферментов – специфичность к определенному субстрату. И, соответственно, способность катализировать только одну или реже ряд реакций. Обычно подобные процессы обратимы. За выполнение обоих функций ответственен один фермент. Но это еще не все.

Роль белков-ферментов существенна. Без них не протекают биохимические реакции. За счет действия ферментов появляется возможность реагентам преодолеть активационный барьер без существенных затрат энергии. В организме нет возможности нагреть температуру более 100 °С или использовать агрессивные компоненты наподобие химической лаборатории. Белок-фермент соединяется с субстратом. В связанном состоянии происходит модификация с последующим освобождением последнего. Именно так действуют все катализаторы, применяемые в химическом синтезе.

Особенности работы

Уровень специфичности ферментов варьируется. Но любой энзим всегда активен в отношении конкретного субстрата или группы соединений, аналогичных по структуре.

Небелковые катализаторы не обладают таким свойством. Специфичность измеряется константой связывания (моль/л), которая может достигать 10−10 моль/л. Работа активного фермента стремительна. Одна молекула катализирует тысячи-миллионы операций в секунду. Степень ускорения биохимических реакций существенно (в 1000-100000 раз) выше, чем у обычных катализаторов.

Действие ферментов построено на нескольких механизмах. Наиболее простое взаимодействие происходит с одной молекулой субстрата с последующим образованием продукта. Большинство энзимов способны связывать 2-3 разные молекулы, вступающие в реакцию. Например, перенос группы или атома от одного соединения к другому или двойное замещение по принципу «пинг-понг». В данных реакциях обычно соединяется один субстрат, а второй связывается посредством функциональной группы с ферментом.

Изучение механизма действия фермента происходит с помощью методов:

  1. Определения промежуточных и конечных продуктов.
  2. Изучения геометрии структуры и функциональных групп, связываемых с субстратом и обеспечивающих высокую скорость реакции.
  3. Мутации генов фермента и определения изменения в его синтезе и активности.

Активный и связывающий центр

Молекула субстрата значительно меньше по размеру, чем белок-фермент. Поэтому связывание происходит за счет небольшого числа функциональных групп биокатализатора. Они формируют активный центр, состоящий из определенного набора аминокислот. В сложных белках в структуре присутствует простетическая группа небелковой природы, которая также может входить в состав активного центра.

Следует выделить отдельную группу энзимов. У них в состав молекулы входит кофермент, постоянно связывающийся с молекулой и освобождающийся от нее. Полностью сформированный белок-фермент называется холоферментом, а при удалении кофактора – апоферментом. В качестве коферментов часто выступают витамины, металлы, производные азотистых оснований (НАД – никотинамидадениндинуклеотид, ФАД – флавинадениндинуклеотид, ФМН – флавинмононуклеотид).

Связывающий центр обеспечивает специфичность сродства к субстрату. За счет него формируется устойчивый субстратно-ферментный комплекс. Структура глобулы построена так, чтобы иметь на поверхности нишу (щель или впадину) определенного размера, обеспечивающего связывание субстрата. Располагается эта зона обычно недалеко от активного центра. У отдельных ферментов есть участки для соединения с кофакторами или ионами металлов.

Белок-фермент играет важную роль в организме. Подобные вещества катализируют химические реакции, отвечают за процесс обмена веществ — метаболизм. В любой живой клетке постоянно происходит сотни биохимических процессов, включающих восстановительные реакции, расщепление и синтез соединений. Постоянно происходит окисление веществ с большим выделением энергии. Она в свою очередь тратится на формирование углеводов, белков, жиров и их комплексов. Продукты расщепления являются структурными элементами для синтеза необходимых органических соединений.

Ферментные белок

Cтраница 1

Ферментные белки действуют как биокатализаторы, снижая энергию активации. Химические превращения метаболита на ферменте протекают при обычной температуре. Ферменты, таким образом, обеспечивают протекание таких реакций, которые без них могли бы происходить только при высокой температуре или при других нефизиологических условиях, которые клетка не могла бы выдержать.  

Ферментные белки катализируют многие реакции с участием относительно малых молекул. Сами ферменты имеют молекулы относительно больших размеров и, следовательно, в процессе ферментативной реакции в результате столкновения с молекулой субстрата в контакте с последним должен находиться лишь относительно небольшой участок молекулы фермента. Этот участок является не чем иным, как его активным центром.  

Некоторые ферментные белки были удовлетворительно очищены при помощи этих соединений, особенно если они имели небольшой молекулярный вес и изо-электрическую точку в слабощелочной зоне. Однако со временем стало ясно, что смолы недостаточно эффективны для фракционирования и очистки большинства ферментов, и тогда были созданы ионообменники, представляющие собой химические производные целлюлозы, в которую вводились ионогенные радикалы различных типов.  

Специфичность ферментных белков, синтез которых контролируют гены, определяется последовательностью аминокислот в полипептидных цепях.  

Нарушение биосинтеза структурных и ферментных белков повлечет за собой нарушение процессов обмена веществ, что приводит к полному расстройству многих сторон метаболизма растительного организма.  

Выделение из сырья ферментных белков, получение концентрированных различной активности ферментных препаратов также могут быть более экономичными. Здесь должны вводиться наиболее совершенные технологические схемы, с применением самых доступных солей для высаливания, минимальных количеств органических растворителей, наиболее простых способов выделения ферментных белков, их очистки, адсорбции и элюции.  

Ход выделения и очистки ферментных белков контролируется чаще всего по двум основным показателям: определению активности и определению количества белка в системе. Иными словами, за ходом очистки следят по возрастанию удельной активности материала, которое выражается числом единиц фермента в 1 мг белка.  

Очень важной особенностью структуры ферментных белков является существование на их поверхности различных, но как-то взаимодействующих центров.

Если, например, на фермент действует продукт реакции, ускоряемой данным ферментом, то белок фермента связывает молекулы продукта и при этом часто происходит резкое снижение активности.  

В ближайшем будущем получение ряда ферментных белков потенциально возможно с помощью рДНК — биотехнологии, которая ныне затрагивает практически все сферы биотехнологии.  

Активно обновляющимися клеточными веществами являются молекулы ферментных белков, иРНК, материал клеточных стенок и мембран. Динамическое состояние свойственно почти всем метаболитам и структурам клетки, различие наблюдается только в отношении скоростей процессов обновления различных клеточных компонентов. Исключение составляют молекулы ДНК и некоторых бактериальных белков. В отношении ДНК понятно, что динамическое состояние генетического материала повышает опасность возникновения ошибок при его обновлении и связанные с этим летальные последствия для организма.  

С белковым голоданием связан также распад ряда ферментных белков, которые выполняют каталитическую функцию в углеводном или жировом обмене. Действительно, было обнаружено, что печень крыс, находившихся 15 — 20 дней на малобелковой диете, была практически лишена гликогена, несмотря на большое количество углеводов в пище и высокую ее калорийность.  

Следовательно, белковое голодание, сопровождаясь распадом ферментных белков, приводит к глубоким изменениям обмена, обусловленным нарушениями ферментативных функций печени и других органов.  

С белковым голоданием связан также распад ряда ферментных белков, которые выполняют каталитическую функцию в углеводном или жировом обмене. Действительно, было обнаружено, что печень крыс, находившихся 15 — 20 дней на малобелковой диете, была практически лишена гликогена, несмотря на большое количество углеводов в пище и высокую ее калорийность.  

Следовательно, белковое голодание, сопровождаясь распадом ферментных белков, приводит к глубоким изменениям обмена, обусловленным нарушениями ферментативных функций печени и других органов.  

Интересно, что аллостерическими свойствами обладают и не только ферментные белки, но и белки, выполняющие иные функции, например гемоглобин; это обстоятельство указывает на универсальность аллостеризма как важнейшего средства регулирования. Регулирования деятельности той или иной цепочки ферментов по описанному принципу недостаточно для того, чтобы клетка получала все необходимые ей белки с надлежащей скоростью и в нужных относительных количествах.  

§ 10. КЛАССИФИКАЦИЯ БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин, принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При взаимодействии гемоглобина с кислородом образуется оксигемоглобин. В альвеолах легких гемоглобин насыщается кислородом. В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением кислорода, который используется клетками:

Гемоглобин может образовывать соединение с оксидом углерода (II), которое называется карбоксигемоглобином:

Карбоксигемоглобин не способен присоединять кислород. Вот почему происходит отравление угарным газом.

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Рис. 19. Гем

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20).

Рис. 20. Фосфопротеин

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н2 протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21).

Рис. 21. Липопротеины в клеточной мембране

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие с ними ковалентную связь.

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин.

Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

Рис. 23. Клеточная мембрана.

Питательные и запасные белки

Питательным белком является казеин, основная функция которого заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки, способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

Рис. 24. Транспорт глюкозы через клеточную мембрану

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

Рис.25. Передача внешних сигналов в клетку

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Re: Ферменты добавляемые в протеин.

Uncle Bens » Ср июл 13, 2011 10:53 pm

Изучив этот вопрос, с вашего позволения добавлю:
Людям, связанным с силовыми видами спорта очень важны белки и соответственно ферменты, помогающие их расщеплять (протеолитические ферменты, так называемые протеазы).

Протеазы бывают животного и растительного происхождения — и те, и другие по-своему хороши для определенных видов белков и пептидов.
В продаже в основном легко найти комплексные ферментивные препараты такие как панкреатин и его аналоги (фестал, мезим и т.д.), но в них очень мало протеаз, в основном акцентирование идет на липазы и амилазы, расщепляющие жиры и углеводы соответственно. Думаю, помогать своему организму усваивать и без того довольно неплохо усваивающийся жир, не хотелось бы., поэтому обратить внимание следует на препараты где ключевыми ферментами являются протеазы, которые в свою очередь могут быть животного и растительного происхождения:
животные протеолитические ферменты — пепсин, трипсин, химотрипсин.,
растительные протеолитические ферменты — папаин, бромелаин.
В аптеках можно легко купить пепсин — протеаза желудка. Но он к сожалению помогает расщеплению белков в желудке только до пептидов, в расщеплении пептидов в кишечнике он не участвует. Еще одним из минусов является повышение кислотности желудка, так как пепсин активен только в кислой среде. Отличной альтернативой пепсину может послужить папаин, получаемый из сока плодов папайи. Действует в отсутствии кислой среды и вообще, на сколько я понял замечательный фермент во всех отношениях. Содержится в препаратах пепфиз, вобэнзим, юниэнзим. В вобэнзиме также содержится бромелаин — еще один очень неплохой растительный протеолитический фермент, добываемый из соков ананаса. Он на столько хорошо расщепляет белки, что думаю каждый кто съедал много этого плода, ощущал жжения в ротовой полости и на губах. Еще в вобэнзиме содержится трипсин и химотрипсин — ферменты поджелудочной железы, которые на сколько я понял, помогают дорасщепить то, что оставил после себя пепсин — т.е. пептиды до аминокислот.
Из препаратов можно еще приобрести абомин — сычужные протеазы, расщепляющие животные белки, по большей части молочные.
И панолез — панкреатин с высоким содержанием протеаз.

Добавить комментарий

Закрыть меню